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SUMMARY

Lineage tracing and fate mapping, overlapping yet distinct disciplines to follow cells and their progeny, have
evolved rapidly over the last century. Lineage tracing aims to identify all progeny arising from an individual
cell, placing them within a lineage hierarchy. The recent emergence of genomic technologies, such as sin-
gle-cell and spatial transcriptomics, has fostered sophisticated newmethods to reconstruct lineage relation-
ships at high resolution. In contrast, fate maps, schematics showing which parts of the embryo will develop
into which tissue, have remained relatively static since the 1970s. However, fate maps provide spatial infor-
mation, often lost in lineage reconstruction, that can offer fundamental mechanistic insight into development.
Here, we broadly review the origins of fate mapping and lineage tracing approaches. We focus on the most
recent developments in lineage tracing, permitted by advances in single-cell genomics. Finally, we explore
the current potential to leverage these new technologies to synthesize high-resolution fatemaps and discuss
their potential for interrogating development at new depths.
Fate mapping and lineage tracing are closely related, yet distinct

tools that form a central pillar of developmental biology. Fate

maps are schematics where eventual cell fate is projected onto

an embryo at a specific stage of development, depicting which

cell or region gives rise to a particular tissue. Lineage tracing,

stemming from century-old fate mapping experiments, aims to

construct a hierarchy of all progeny arising from an individual

cell but does not necessarily capture positional information.

Early fate mapping efforts visually tracked individual cells or re-

gions within an embryo, linking initial position to future fate (Con-

klin, 1905; Vogt, 1929). Such approaches quickly proved to be

powerful tools in developmental biology, providing a picture of

how initial position within an embryo can influence final fate.

This rich spatial information offered fundamental mechanistic

insight, such as whether the development of a specific

organism is mosaic, i.e., highly dependent on lineage, or regula-

tive, i.e., flexible and able to adapt to developmental perturbation

(Lawrence and Levine, 2006). Although, in some instances, indi-

vidual cells could be tracked, fate mapping was commonly de-

ployed at the tissue level, offering broad, sometimes sweeping

overviews of developmental patterning. While stemming from

fate mapping, lineage tracing is distinct in its aim to reconstruct

lineage hierarchy back to an individual cell (Figure 1). Indeed, in

this respect, lineage provides valuable information on cell poten-

tial, where branching hierarchies can pinpoint the timing of crit-

ical cell fate decisions during development.

Lineage tracing strategies are rapidly advancing due to prog-

ress in genomics, enabling the construction of increasingly com-
plex lineage hierarchies across diverse developmental systems.

However, these emerging technologies typically do not capture

spatial information, a crucial component of the fate map. Indeed,

fate maps have generally remained static over the past few de-

cades, yet they offer tremendous insight into the relationships

between cells across time and position within the embryo.

Without this spatial understanding, we lose knowledge of tissue

borders, identities of adjacent cells, and intercellular communi-

cation—all essential facets in our understanding of cell fate

specification. However, at present, fate maps typically only cap-

ture cell position and identity as determined from low-dimen-

sional measurements, limiting the resolution of these ap-

proaches. Here, we broadly review the origins of fate mapping

and lineage tracing approaches. We focus on recent advances

in single-cell genomics to overcome several fundamental limita-

tions in the construction of lineage hierarchies. We also discuss

nascent technologies to integrate spatial information, high-

lighting the discoveries enabled by these methods. Finally, we

explore the concept of next-generation, dynamic fate maps

and the technical advances required for their construction.

FOUNDATIONS OF FATE MAPPING AND LINEAGE
TRACING: DIRECT OBSERVATION AND CELL LABELING

Fate mapping relies on tracking cells within a developing organ-

ism, in a non-destructive manner. In the late 1800s, advances in

light microscopy and dye injection techniques enabled such cell

tracking via direct observation (Figure 2A) (Kretzschmar and
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Figure 1. The Distinction between Fate
Mapping and Lineage Tracing
Fate maps are schematics representing the devel-
opmental potential of specific cells or regions of
cells within an embryo at a defined stage. Upper
panels: early Xenopus development fate map, re-
taining cell-cell relationships and position. Lower
panels: lineage tracing, the identification of all
progeny arising from an individual cell. Each color in
the branching tree relates to a region of the corre-
sponding fate map. Dashed lines depict lineages not
shown for simplicity.
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Watt, 2012; Stent, 1998; Stern and Fraser, 2001). Notably, Whit-

man used direct observation to trace early cleavage and fate in

leech development, demonstrating that stereotypical, invariant

cell divisions determine eventual cell fate at early cleavage-

stages (Whitman, 1878, 1887). Subsequently, in 1905, Conklin

generated the first comprehensive fate map by tracking progen-

itor cells of the tunicate, Styela partita. The cell tracing in these

experiments was powered by simple observation of cell color

changes during differentiation, enabling fate map assembly

(Conklin, 1905). With further developments in time-lapse cine-

matography, cells and their progeny within developing embryos

could be traced (Wetzel, 1929). Perhaps the most famous

example of this approach is represented by the microscopy-

based direct observation of live animals to construct a complete

lineage of C. elegans development (Sulston et al., 1983). Indeed,

this example serves to demonstrate how lineage tracing and fate

mapping overlap with the incorporation of spatial information

into cell tracking (Figure 1).

The embryos used in these early studies were typically trans-

parent, contained limited cell numbers, and had invariant cell lin-

eages in most cases, supporting the straightforward observation

of individual cells and their progeny. Fate mapping and lineage

tracing in developmental systems with opaque embryos

required cell labeling strategies, such as dyeing or radiolabeling

(Kretzschmar andWatt, 2012; Stern and Fraser, 2001). Vogt was

the first to develop and apply these techniques in the 1920s, fate

mapping a variety of embryos, concluding that a stereotypic line-

age does not define the development of some species (Vogt,

1929). Altogether, these techniques were invaluable in the con-

struction of fate maps of many developing organisms, from the

stereotyped development of leeches to the variable develop-

ment of mice (Lawrence and Levine, 2006). For example, the

intracellular injection of tracer dye allowed zebrafish fate map

construction, which was instructive for understanding that clonal

restrictions occur at the onset of gastrulation (Kimmel et al.,

1990). However, these approaches still faced several funda-

mental limitations, such as the extended periods required to

observe development in vitro, or the limited scalability of dye in-

jection. The optics of light microscopy also restricted the types of

embryos that were amenable to observation as they could not

become too dense or pigmented during their development.
8 Developmental Cell 56, January 11, 2021
As described so far, the cell labeling

used to build these early fate maps repre-

sents the first rudimentary lineage tracing.

Indeed, although fatemapping significantly

overlaps with lineage tracing, they cannot
be considered equivalent since lineage refers to the hierarchy

of cellular relationships and not spatial position. The systems in

which a complete lineage tree can be captured simultaneously

with a fate map, such as the C. elegans lineage, are outliers in

this respect. The reality is that although lineage tracing has

evolved significantly since the first fate maps emerged, our

spatial understanding of lineage, the fate map, has been playing

catch-up. Indeed, the black-and-white Xenopus laevis fate map

remains unchanged from the original dye injection experiments

in the 1970s (Nakamura and Kishiyama, 1971). Later in this re-

view, we return to the current potential to construct a new gen-

eration of fate maps, based on emerging lineage tracing tech-

niques and spatial transcriptomic technologies. Next, we

review the evolution of cell and lineage tracing methods with

no loss of signal or dye diffusion in progeny, and the ability to

discriminate lineage on a single-cell basis, enabling the assem-

bly of lineage hierarchies for increasingly complex tissues and

organisms (Figure 2).

LEVERAGING NATURAL PHENOTYPIC VARIATION AS
HERITABLE MARKS

At the turn of the 20th century, as embryology became more so-

phisticated, surgical and genetic manipulations shed light on cell

lineage, though typically only to tissue-level resolution. For

example, interspecies grafts exploited differences in graft color-

ation to support the direct observation of organizer potential

before transgenic markers such as green fluorescent protein

(GFP) were available (Figure 2B) (Spemann and Mangold,

1924; Wetzel, 1929). Genetic mosaicism studies also emerged

around this time. Drosophila simulans gynandromorphs, genetic

mosaics of male and female cells, yielded preliminary fate maps

showing that different landmarks in the fly derive from separate

cleavage nuclei (Sturtevant, 1929). Forty years later, these data-

sets were re-analyzed to generate comprehensive fate maps

(Garcia-Bellido and Merriam, 1969). As an alternative to gynan-

dromorphs, Drosophila mosaics could be generated by mitotic

recombination (Stern, 1936). Analysis of the wing disc in these

mosaics led to the discovery of compartments—the lineage

segregation of proliferating cells into non-intermingling groups

of cells, leading to functional subdivisions that shape the
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Figure 2. Evolution of Lineage Tracing Techniques
(A–I) Graphical depictions of (A) fate mapping via dye injection in the 1890s, (B) axis development and grafting, (C) generation of chimeric mouse embryos, (D)
retroviral labeling of cells, (E) specialized Cre-loxP cassettes for clonal analysis, (F) Cas9 scar accrual in organisms, (G) viral barcoding approaches for clonal and
lineage analysis, (H) Cas9 scar accrual compatible with scRNA-seq, and (I) transposon-mediated barcode accrual.
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organism—a core concept in developmental biology (Garcia-

Bellido et al., 1973).

In the 1960s, Tarkowski andMintz leveraged the regulative na-

ture of mouse development to generate the first experimental

mosaic mammals (Figure 2C) (Mintz, 1965; Tarkowski, 1961).

These chimeric embryos were created by aggregating cleav-

age-stage mouse embryos, enabling evaluation of the contribu-
tions of each original embryo to the adult mouse. These classic

experiments used embryos with different genetically heritable

characteristics for chimera generation, revealing the clonal

origins of melanocytes (Tarkowski, 1964a), effects of mosaic ge-

netic hermaphroditism (Tarkowski, 1964b), and developmental

repercussions of known lethal mutations (Mintz, 1964). Beyond

intraspecies embryo aggregations, Le Douarin pioneered
Developmental Cell 56, January 11, 2021 9
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chimerism between different species (Le Douarin and Barq,

1969). Phenotypic differences between nuclei of the two species

(chick and quail) enabled the distinction between transplanted

cells and host cells, to track the migration, plasticity, and fate

of neural crest cells (Le Douarin, 1980). Uniting all these ap-

proaches, in contrast to prior cell labeling experiments, these

phenotypic ‘‘labels’’ were indelible, supporting long-term cell

tracking, dispensing with the requirement for continuous

observation. However, while these naturally occurring pheno-

typic differences helped establish a great deal of knowledge,

their resolution was generally coarse, restricted to groups of cells

and tissue-level observations. Furthermore, most of these

techniques do not allow the direct monitoring of cells and their

progeny, rendering them ineffective for lineage hierarchy con-

struction.

LINEAGE TRACING USING GENETIC
RECOMBINATION TOOLS

We have so far discussed techniques to identify lineage rela-

tionships based on cell morphology, prospectively marking

cells with dyes, or by exploiting natural phenotypic variation

between cells. However, lineage tracing using these ap-

proaches was restricted to specific organisms, inefficiently

and non-specifically targeting cells. The advent of gene clon-

ing in the 1970s (Chang and Cohen, 1974; Cohen et al.,

1973) set the stage for transgenic lineage tracing. In 1987,

Cepko used retroviral transduction to introduce b-galactosi-

dase as a marker into the developing rat retina (Figure 2D)

(Turner and Cepko, 1987). Careful titering of the virus to

obtain as few marked cells as possible allowed the inference

of lineage from individual cells, revealing that a single retinal

progenitor can generate multiple cell types. These experi-

ments can be defined as a clonal analysis since they identify

the progeny derived from an individual cell, but the resolution

is insufficient to construct a lineage hierarchy. Indeed, many

of the early lineage tracing methods we discuss are able to

identify all progeny arising from an individual cell, but they

are not able to meet a stricter definition of lineage tracing,

which requires that ancestor-progeny relationships are

resolved to assemble a lineage tree.

Lineage tracing evolved quickly with the discovery and appli-

cation of recombinase enzymes, Cre (Sauer and Henderson,

1988; Sternberg and Hamilton, 1981) and FLP (Golic and Lind-

quist, 1989). Cre and FLP induce recombination between their

DNA target sites, loxP, and FRT, respectively, where target-site

directionality can generate either inversions or deletions of the

intervening DNA in a predictable manner (Nagy, 2000). For line-

age tracing, Cre or FLP recombinase is constitutively expressed

under the control of a tissue-specific promoter. Within these

targeted cells, loxP/FRT sites are recombined, resulting in the

excision of stop codons placed upstream of a ubiquitously

expressed reporter, such as GFP. Consequently, the reporter

is expressed and becomes a permanent, heritable mark of the

targeted cell population. In flies, FLP-FRT-mediated recombina-

tion proved to be highly efficient and less toxic than Cre-loxP

(Golic and Lindquist, 1989; Siegal and Hartl, 1996) and was first

used to label clones in the Drosophila embryo and ovary (Harri-

son and Perrimon, 1993).
10 Developmental Cell 56, January 11, 2021
In mammals, the first Cre reporter mice incorporated the ubiq-

uitous expression of b-galactosidase (Soriano, 1999) and EGFP

(Mao et al., 2001). Recombinase-mediated lineage tracing

advanced rapidly, where inducible recombination introduced

spatial and temporal control, enabling the labeling of different

cell subpopulations (Metzger et al., 1995). The identification of

intestinal stem cells represents a benchmark example of the po-

wer of lineage tracing using recombination (Barker et al., 2007).

Hypothesizing that the Wnt target gene Lgr5 marked stem cells

of the small intestine, Barker et al. (2007) developed a mouse

line by knocking both CreERT2 and EGFP into the Lgr5 locus.

The fusion of Cre to the estrogen receptor (ER) allows drug-

inducible control of recombination, via administration of tamox-

ifen in this case. These experiments demonstrated that Lgr5-ex-

pressing cells give rise to all intestinal lineages, supporting long-

term maintenance of the intestinal epithelium.

Although genetic recombination-based lineage tracing was

quickly adopted, several limitations emerged. For instance,

tamoxifen administration can induce apoptosis, perturbing

normal tissue homeostasis (Zhu et al., 2013). In terms of labeling

fidelity, the expression of a single genemay not specifically mark

the cell population of interest, although improved labeling spec-

ificity can be achieved by coupling recombination to the expres-

sion of multiple genes. For example, Split-Cre comprises two

cleaved, inactive Cre fragments, each driven by a different pro-

moter. Activation of both promoters within the same cell results

in Cre enzyme reconstitution, driving recombination (Hirrlinger

et al., 2009).

INCREASING LINEAGE TRACING RESOLUTION AND
PRECISION

Another vital consideration for recombination-based lineage

tracing is the frequency of cell labeling. Within a densely labeled

population, it is not possible to distinguish whether two marked

cells in close proximity are derived from a common ancestor or

independent labeling events. While sparse labeling can provide

theoretically clonal resolution, this approach may capture sub-

populations that are not representative of the overall population

behavior (Blanpain and Simons, 2013). ‘‘Mosaic’’ labeling cap-

tures a larger proportion of the population, while multicolor line-

age tracing, such as ‘‘Brainbow,’’ allows identification of clones

within the many labeled cells. Brainbow uses stochastic Cre-

mediated recombination to induce combinatorial expression of

fluorescent reporter transgenes, creating up to 90 discernable

fluorescent signatures (Livet et al., 2007). The Brainbow system

powers clonal analysis from mosaic labeling of cell populations

as cells derived from a common ancestor can be identified

based on their shared color. For example, the original Brainbow

report enabled observation of neural circuits in mossy fiber neu-

rons of the cerebellum and interdigitation of Bergmann glia within

Purkinje cell glial sheaths (Livet et al., 2007). Confetti shares sim-

ilarities with Brainbow but generates a single random fluorescent

protein output, creating four discernable fluorescent signatures

(Snippert et al., 2010) (Figure 2E).

Overall, these approaches bring recombinase-mediated

lineage tracing increasingly closer to clonal resolution as the

number of unique labels markedly expands. Reproducibility,

pattern analysis, and statistics all support the assumption that
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theoretically single clones can be traced using the Brainbow

(Livet et al., 2007; Weissman and Pan, 2015) and Confetti re-

porters (Snippert et al., 2010). However, the restricted color pal-

ettes using these optical techniques limit the construction of

comprehensive lineages and fate maps. Specifically, unrelated

cells in close proximity may stochastically acquire the same co-

lor combination, representing a ‘‘label collision’’ that erroneously

merges two unrelated lineages. In contrast with these restricted

fluorophore combinations, genetic DNA ‘‘barcoding,’’ called Pol-

ylox, uses random Cre-LoxP-mediated recombination events,

creating up to�1.9 million unique genetic barcodes to label cells

(Pei et al., 2017). This technique identified hematopoietic stem

cell (HSC) clones in vivo, where skewed barcode distribution

suggested the independence of erythroid-myeloid differentiation

from commonmyeloid progenitors and confirmed previous tree-

like lineage structures of hematopoiesis (Pei et al., 2017). Rela-

tive to the 4, and �90 possible labels afforded by Confetti and

Brainbow, respectively, Polylox offers a much more statistically

robust model for lineage tracing, decreasing the likelihood of la-

bel collision.

Although an increase in label diversity can improve lineage

tracing resolution, there are many confounders of interpreting

lineage results. For instance, the reporter expression used to la-

bel cellsmay be silenced in specific cell populations, as has been

demonstrated with retrovirus-mediated cell labeling (Walsh and

Cepko, 1992). This selective loss of labels from specific popula-

tions can mask genuine lineage relationships. Such silencing

events can be overcome by the integration of the genetic labeling

components into ‘‘safe-harbors’’ of the genome (Rinkevich et al.,

2011; Snippert et al., 2010). In addition to the loss of lineage in-

formation from silencing, differential labeling of cell populations,

inefficient cell and label capture, and loss of cells due to

apoptosis can result in lineage termination, confounding inter-

pretation of results. Next, we further explore the development

and application of genomic technologies for lineage tracing,

which provide unique power but require careful consideration

of these confounding factors.

NEW GENOMIC TECHNOLOGIES TO ENABLE HIGH-
RESOLUTION LINEAGE TRACING

The accurate assessment of cell identity is fundamental to fate

mapping and lineage tracing. However, the lineage tracing tech-

niqueswe have discussed so far use relatively few features, such

as phenotype, position, or select marker expression, to identify

cells. While this approach can be powerful in well-characterized

systems, feature selection to assess cell identity is typically

driven by prior biological knowledge, potentially biasing lineage

reconstruction. At present, single-cell genomic technologies

support a more objective assessment of cell identity, enabling

the capture of many thousands of gene expression measure-

ments while maintaining the cellular resolution required for accu-

rate lineage reconstruction (Kester and vanOudenaarden, 2018).

Since its relatively recent emergence in 2009 (Tang et al., 2009),

single-cell RNA sequencing (scRNA-seq) has seen wide adop-

tion and rapid development. Beyond gene expression measure-

ments, multi-omic single-cell assays integrate additional tech-

niques to quantify proteomes, genomes, and epigenomes

(Stuart and Satija, 2019).
In concert with this technical progress, sophisticated compu-

tational tools have emerged to visualize and interpret the result-

ing complex datasets, leading to the identification of novel cell

types and new mechanistic insights into biological processes.

With particular relevance for developmental biologists, single-

cell data have supported the inference of cell differentiation

trajectories. A single ‘‘snapshot’’ of a developing cell population

allows the ordering of individual cells according to gradual

changes in their transcriptomes or chromatin accessibility pro-

files. This ‘‘pseudo-temporal ordering’’ yields plots that resemble

branching lineages, although differentiation origins cannot be

inferred from cells that are not captured or insufficiently sampled

(Kester and van Oudenaarden, 2018). These approaches are

valuable for identifying regulatory factors, such as transcription

factors associated with specific branches of differentiation.

However, it is crucial to acknowledge that such computational

inference from single-cell data does not provide ground-truth

lineage information, contrasting with the techniques discussed

in previous sections. Indeed, to map a true lineage, cell

ancestor-progeny relationships must be mapped, and in this

respect, genomic technologies offer powerful tools to track

and reconstruct lineage relationships. Next, we review the

emergence of innovative techniques to encode heritable lineage

information within the genome, captured in parallel with other

cellular features, at high resolution, and with little limitation

on scale.

Labeling and Tracking Cells Using Heritable Genetic
Barcodes
Genome-based lineage tracing exploits sequence information to

define lineage relationships between cells. Some techniques

leverage naturally occurring somatic mutations that can be de-

tected using scRNA-seq to retrospectively identify cells derived

from a common ancestor (Leung et al., 2017; Lodato et al., 2015;

Ludwig et al., 2019). Although this approach supports the inves-

tigation of systems that are not amenable to experimental

manipulation, the relative infrequency of somatic mutation pro-

duces phylogenies of limited resolution. However, somatic mu-

tation in mitochondrial DNA (mtDNA) has recently been shown

to support clonal tracking at 1,000-fold the resolution of previous

approaches and can allow the parallel capture of gene expres-

sion and chromatin accessibility (Ludwig et al., 2019). This

increase in resolution is afforded by the higher somatic mutation

rates of mtDNA, relative to nuclear DNA, and the high copy

number of mitochondrial genomes in the cell. Nevertheless,

this retrospective lineage tracing approach cannot support the

reconstruction of complete lineage trees. More commonly,

single-cell lineage tracing (scLT) is achieved by prospectively

introducing a heritable genetic sequence into a cell, then deter-

mining clonal inheritance and constructing cell lineage retro-

spectively from sequencing data (Kester and van Oudenaarden,

2018).

The first scLT techniques are reminiscent of Cepko’s original

clonal analysis in the 1980s, utilizing retroviral transgene integra-

tion (Lu et al., 2011; Naik et al., 2013; Porter et al., 2014) or trans-

posable elements (Rodriguez-Fraticelli et al., 2018; Sun et al.,

2014) to incorporate DNA sequences into cells and to distinguish

them from each other via sequencing. These discriminating DNA

sequences are more commonly referred to as ‘‘barcodes’’ to
Developmental Cell 56, January 11, 2021 11
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Figure 3. Inheritance of Barcodes for Single-Cell Lineage Tracing
(A) Accrual of heritable barcodes (CellTagging) for lineage construction.
(B) scGESTALT (genome editing of synthetic target arrays for lineage tracing), a Cas9-CRIPSR-based approach for continuous scar accrual on a single
transgene.
(C) MEMOIR (memory by engineeredmutagenesis with optical in situ readout), tracks CRISPR-Cas9-targeted scars that accrue over time in visually distinct cells.
This technique employs barcoded ‘‘scratchpads,’’ which are randomly edited over time via Cas9 targeting and read by a specialized set of smFISH probes. (D)
CARLIN (CRISPR array repair lineage tracing) comprises a stably integrated Cas9 target allele, containing 10 locations for double-strand breaks and subsequent
repair to occur. Editing can be induced, and barcodes created from DNA repair are captured via scRNA-seq for lineage reconstruction.
(E) TracerSeq: barcodedGFP reporter insertion into the genome, using the Tol2 transposase. Accrual of barcodes creates unique lineage identity labels for each cell.

ll
Review
denote the unique labeling of each ancestor and their descen-

dants (Figure 3). Here, we use the terms ‘‘barcode’’ and ‘‘label’’

interchangeably. Some of the initial DNA barcoding scLT

methods used an alternate approach by tracking CRISPR-

Cas9-mediated genetic scarring on a stable transgene

(Figure 2F) (Junker et al., 2016; McKenna et al., 2016). However,
12 Developmental Cell 56, January 11, 2021
these early techniques typically required DNA-based barcode

sequencing, which could not capture the transcriptome, forfeit-

ing detailed information on cell identity and state.

To render cell barcoding approaches compatible with scRNA-

seq, techniques evolved to express DNA barcodes as RNA tran-

scripts (Biddy et al., 2018; Weinreb et al., 2020; Yao et al., 2017).
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Thesemethods commonly insert a barcode within the 30UTR of a

transgene, where a constitutive promoter drives its high expres-

sion, enabling reliable capture of the barcode in parallel with the

transcriptome (Figure 2G). The barcodes, unique due to their

randomized short sequences of nucleotides, are typically intro-

duced via lentiviral transduction. Thus, these genetic identifiers

are integrated into the genome of a cell and inherited by its prog-

eny. It is important to note here that lineage tracing in thismanner

is strictly clonal analysis because it can identify populations

arising from an individual cell, but a single round of cell labeling

cannot yield a resolved lineage tree. To overcome this constraint,

modified barcodes called ‘‘CellTags’’ were developed to label

cells in successive rounds, providing a relative timescale to their

accumulation, enabling lineage tree construction (Figure 3A)

(Biddy et al., 2018; Kong et al., 2020).

These lentiviral barcoding approaches are particularly suited

to accessible in vitro cell culture or regenerative systems where

cells can be harvested, labeled, and transplanted. These sys-

tems are powerful for ‘‘clonal resampling,’’ where a portion of

the clone is sampled early, leaving the rest of the clone to differ-

entiate (Wagner and Klein, 2020). This experimental design

allows early cell state to be linked to eventual fate, providing

clues into the early regulatory factors that set cells onto a defined

lineage branch. For example, CellTagging revealed that distinct

lineage conversion trajectories are determined at reprogram-

ming initiation, and uncovered gene regulatory hallmarks of cells

destined to reprogram (Biddy et al., 2018; Kamimoto et al.,

2020). A similar cell barcoding strategy has mapped state-fate

relationships in hematopoiesis, demonstrating that the gene

expression of cell ancestors does not reliably predict the fate

of their descendants. These findings suggest the existence of

heritable properties guiding fate determination that scRNA-seq

fails to capture (Weinreb et al., 2020). Additional information,

such as chromatin accessibility, may uncover these hidden

heritable properties, delivering further mechanistic insight into

development and reprogramming.

Mutable Barcodes for the Reconstruction of Lineage
Hierarchies
Elegant strategies have been devised based on the gradual

mutation of barcodes that are ‘‘built-in’’ to the genome, enabling

lineage tracing in whole organisms. Throughout a biological

process, these barcodes slowly morph, allowing identification

of related cells and phylogenetic tree construction. CRISPR-

Cas9 has been fundamental in the development of these tech-

nologies, where the introduction of random mutations into

genomic DNA uniquely labels cells. A typical feature of these ap-

proaches incorporates genetic barcodes within a multi-copy

transgenic reporter, targeted by a sgRNA. The expression of

Cas9 induces the cumulation of edits within these barcodes

over time, allowing lineage reconstruction. In the first iteration

of this approach, genomic DNA sequencing captured informa-

tion within these barcodes (Figure 2F) (Junker et al., 2016;

McKenna et al., 2016). However, by targeting edits to a synthetic

construct that produces a transcript captured via scRNA-seq,

cell identity and lineage can be measured in parallel

(Figure 2H) (Alemany et al., 2018; Raj et al., 2018; Spanjaard

et al., 2018). By targeting the same synthetic construct multiple

times, genetic scar accrual places individual cells within a line-
age hierarchy, akin to how phylogenetic relationships between

species are defined based on shared and unique characteristics

(Figure 3B).

To track cells within an intact, developing organism, the

GESTALT (genome editing of synthetic target arrays for lineage

tracing) zebrafish models have CRISPR-Cas9 editable cassettes

engineered within their genomes (McKenna et al., 2016) and are

compatible with scRNA-seq-based lineage tracing (Raj et al.,

2018). The first experiments with the GESTALT zebrafish

sampled labeled cells from different tissues of the adult. Lineage

reconstruction revealed that most cells in the adult fish arise from

few embryonic progenitors (McKenna et al., 2016). Further, when

applied to study neural development in zebrafish, some neural

progenitor populations encompassed a substantial spatial

spread, suggesting progenitor populations were more migratory

than previously thought. Furthermore, a high diversity of cell

types within cell lineages indicated that progenitor populations

maintain a higher degree of potency than expected (Raj et al.,

2018). However, large deletions that erase lineage records limit

the broader application of the GESTALT methods. Other ap-

proaches emerging at the same time, ScarTrace and LINNAEUS,

mitigated these effects by distributing Cas9 targets across the

genome, each integration harboring fewer targets (Alemany

et al., 2018; Baron and van Oudenaarden, 2019; Junker et al.,

2016; Spanjaard et al., 2018).

Indeed, Cas9 editing saturation limited the early CRISPR-

Cas9 schemes, where identical edits may be introduced into

independent cells, resulting in possible false-positive lineage

relationships. Furthermore, editing periods were generally short,

restricting their application to fast-developing organisms. These

limitations presented a particular challenge for lineage tracing in

mammals, where increased label diversity is required to label

large cell populations over long periods. In response, self-target-

ing approaches use a ‘‘homing’’ guide RNA (hgRNA) to direct

CRISPR-Cas9 to its own DNA locus, diversifying its sequence

to act as a genetic barcode (Kalhor et al., 2017, 2018; Perli

et al., 2016). However, this method does not support single-

cell resolution analyses. An alternate approach combines

CRISPR-Cas9 editing with PiggyBac transposase to integrate

target-site cassettes across the genome. Using this system to

study early mouse development revealed convergent differenti-

ation from extraembryonic and embryonic endoderm to a com-

mon endoderm state (Chan et al., 2019). These results support

previous observations that a small portion of the hindgut arises

from extraembryonic progenitors (Kwon et al., 2008).

These initial mouse lineage tracing studies required themanip-

ulation of embryos for each new experiment. Also, the high num-

ber of random transgene insertions precluded the establishment

of breeding lines, limiting analysis of adult tissues. To overcome

these restrictions, the CARLIN (CRISPR array repair lineage

tracing) mouse line couples inducible Cas9 expression with a

single, stably integrated mutable locus to record lineage data

(Figure 3D). With this system, Bowling et al. report a biased dis-

tribution of HSC clones across long bones, suggesting that the

niche into which HSCs home influences their expansion

potential. Additionally, the authors demonstrated that after mye-

loablation, most blood cells are replenished by a small group of

progenitors, shedding light on the clonal dynamics of hemato-

poietic regeneration (Bowling et al., 2020). Together, these
Developmental Cell 56, January 11, 2021 13
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examples demonstrate the value of CRISPR-Cas9-based line-

age tracing methods to provide new insights into mammalian

development.

Lineage Reconstruction via Transposon-Mediated
Barcode Accrual
The suite of CRISPR-Cas9 strategies discussed so far are limited

by lineage recording dropout due to deletions or creation of the

same edit from common repair. In contrast, barcode accrual can

generate a greater diversity of unique heritable sequences

through its combinatorial power. However, lentivirus-based

methods are restricted by the number of times cells can be trans-

duced, yielding rudimentary lineage trees. One method of bar-

code accrual overcomes these challenges to increase the label-

ing frequency: TracerSeq (Wagner et al., 2018). TracerSeq uses

the Tol2 transposase to insert barcoded GFP reporters into the

genome, which are transcribed and captured by scRNA-seq to

obtain lineage data. Over the course of a biological process, bar-

code accrual creates unique label signatures for each cell,

enabling lineage tree construction (Figure 2I). With this method,

it is also possible to control transposition rates, enabling control

of barcode insertion frequency (Figure 3E).

TracerSeq provided two important insights into early zebrafish

development. First, within the 24-h post-fertilization embryo,

cells from disparate embryonic fields can converge in their differ-

entiation to produce transcriptionally similar cells. On the con-

trary, closely related cells can yield vastly divergent cell types.

Indeed, Sulston’s original fate mapping experiments in

C. elegans concluded that, during development, similar neuron

types could arise from discrete lineages (Sulston et al., 1983).

This parallel supports the observations of convergent and diver-

gent differentiation in zebrafish, further demonstrating our need

to understand further how cellular diversity arises during devel-

opment and differentiation as a whole.

Limitations of scLT Methods
The cell barcoding systems discussed so far face various tech-

nical challenges, most frequently associated with barcode cap-

ture inefficiency. Loss of lineage information can arise from bar-

code dropout, particularly when scRNA-seq is used to detect

transcribed cell labels. This partial detection of barcodes is a

particular issue when multiple, independent barcodes comprise

a complete lineage label. Likewise, it is paramount to computa-

tionally correct errors arising from PCR amplification and

sequencing to capture intact lineage information. Beyond these

technical errors, barcodes are lost from the deletion of previously

generated scars that held recorded lineage information, as is the

case with the GESTALT-based methods (McKenna et al., 2016;

Raj et al., 2018). It is also vital to consider silencing, which is an

issue when relying on the capture of expressed barcodes. The

detection of barcodes via genomic DNA can overcome this lim-

itation, as is the case with ScarTrace (Alemany et al., 2018) and

some image-based methods discussed later.

In addition to the failure to collect sufficient and accurate bar-

code information to reconstruct cell relationships, the labeling

and capture rate of cells within a population is also an important

consideration. For example, small yet biologically interesting

clones may be lost due to inefficient cell capture. Such failures

in cell capture can arise from cell death or inadequate cell disso-
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ciation. Furthermore, barcoding only a fraction of the cell popu-

lation under study could severely limit accurate lineage recon-

struction, confounding any biological interpretations made.

Finally, barcode homoplasy, the labeling of unrelated cells with

identical barcodes, results in the collapse of independent clones

and lineages. These various error modes have been reviewed in

detail (Wagner and Klein, 2020).

A recent computational stimulation of cell division and accu-

mulation of CRISPR-Cas9-induced mutations has supported a

quantitative exploration of the limitations discussed so far. This

approach enabled lineage accuracy to be estimated under

different scenarios, including mutation nature and complexity,

mutation frequency, cell lineage depth, and target dropout (Sal-

vador-Martı́nez et al., 2019). From these simulations, the authors

make a series of recommendations in terms of target number

and mutation rate and also suggest that uneven cell division

rates require higher mutation frequencies to maintain lineage

reconstruction accuracy. These simulations demonstrate how

computational approaches may assist in the design of new

experimental scLT strategies.

A new generation of scLT strategies would comprise editable

genomic barcodes that slowly ‘‘evolve,’’ to accrue at least one

mutation per cell division, without the continued requirement

for experimental intervention or problematic sequence deletions

and insertions. The above simulations suggested that 0.05 to

0.25 mutations per cell division can yield accurate trees of

around 65,000 cells (Salvador-Martı́nez et al., 2019). One poten-

tial new method to achieve this is called CHYRON (cell history

recording by ordered insertion), which uses terminal deoxynu-

cleotide transferase (TdT) to insert random nucleotides at a sin-

gle locus (Loveless et al., 2019). Alternatively, fusion of dCas to

alternative types of base editors could provide the unparalleled

targeting of CRISPR-Cas systems, while offering more predict-

ability. These Cas fusion proteins, lacking endonuclease activity,

would also offer the opportunity to preserve the CRISPR-Cas

target site, supporting continual evolution via base editing

without losing targetability at any given site. Nucleic acid editors,

such as the cytidine deaminase APOBEC1, could be candidates

if utilized with a CRISPR-dCas9 system to guide base editing ac-

tivity to predetermined regions (Koblan et al., 2018; Liu et al.,

2019). Together, these approaches based on continuous bar-

code evolution have the potential to enable lineage tracing in

more complex systems, over longer periods.

Computational Challenges for Lineage Reconstruction
We expect to see the development of many types of molecular

techniques for lineage recording, but these approaches rely on

the rigorous interpretation of the complex data they generate.

One of the first computational approaches to reconstruct phy-

logenies from CRISPR-Cas9 scLT data utilized a Camin-Sokal

maximum parsimony method. This approach is commonly

used to create phylogenetic trees, resolving evolutionary rela-

tionships into the least complex tree to explain the different out-

comes (Raj et al., 2018). The initial drawback of this approach

was that it generally went unvalidated until other technologies

and techniques were able to probe this kind of Cas9-induced

scarring data further. Indeed, Spanjaard et al. (2018) note that

in their system, Camin-Sokal maximum parsimony fails to recon-

struct a correct lineage tree. In response, the authors developed
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a custom algorithm for accurate tree reconstruction, fulfilling the

maximum parsimony criterion, in the absence of complete scar

detection. Lineage trees are reconstructed iteratively, with

spurious connections, caused by cell doublets, removed. The

method performed well on simulated data and enabled the infer-

ence of missing scar information, directly addressing some of

the technical limitations discussed above.

An important aspect to note about these pipelines is that they

are so nuanced that there is no standard training dataset or

benchmarking approach to assess their accuracy. It is also diffi-

cult to directly compare the molecular techniques we have

described here, so their comparative efficacy is generally un-

known. Furthermore, it is incredibly challenging to assess the

performance of thesemethods in the absence of known cell line-

age. In most cases, these ‘‘ground truth’’ data are currently un-

known. Aiming to address these challenges, Cassiopeia, a suite

of scalable maximum parsimony approaches for phylogenetic

tree reconstruction, incorporates a simulation framework to eval-

uate algorithms and experimental design, in addition to a ground

truth dataset to benchmark different lineage reconstruction

methods (Jones et al., 2020). Cassiopeia incorporates several al-

gorithms to accurately infer phylogenies while being robust to

experimental nuances such as mutation rate and number of

target sites, as well as being scalable while resilient to data

loss. Although Cassiopeia is tailored for current CRISPR-Cas9

scLT methods, the approach is also poised to adapt to evolving

barcode strategies, as discussed above. Finally, new pipelines

are emerging to reconstruct lineages beyond the window of

active barcoding, or from a single round of cell barcoding (Wein-

reb and Klein, 2020).

Together, these experimental and computational develop-

ments in genomics bring exciting new possibilities for lineage

tracing at high resolution. However, one fundamental limitation

of these techniques remains: single-cell capture via the genomic

methods detailed so far typically requires cell dissociation,

abandoning spatial information, an essential component of fate

mapping. For the remainder of this review, we focus on new

techniques to retain spatial information during transcriptome

capture and explore the integration of methods to construct

high-resolution fate maps (Figure 4).

COUPLING CELL POSITION, IDENTITY, AND LINEAGE
WITH SPATIAL TRANSCRIPTOMICS

To overcome the loss of spatial information resulting from cell

dissociation, several computational methods to infer spatial po-

sition have emerged. The popular scRNA-seq software, Seurat,

was initially developed to infer cell location within an embryo by

integrating scRNA-seq data with in situRNA expression informa-

tion (Satija et al., 2015). In a similar approach, single-cell mRNA

expression profiles have been matched to positional gene

expression data to assign cells to specific positions within tis-

sues (Achim et al., 2015). More recently, these computational

methods have dispensed with the upfront requirement for spatial

information of marker gene expression, taking scRNA-seq data-

sets and inferring spatial positioning based on known character-

istics of the tissue of origin and transcriptomic similarity of cells

(Nitzan et al., 2019). This method assumes that cells in close

proximity are transcriptionally similar, which may not always be
accurate, however. New technologies to capture spatial gene

expression, termed ‘‘spatial transcriptomics,’’ have matured

rapidly in recent years (Moffitt et al., 2018), offering high-resolu-

tion templates with which to integrate scRNA-seq data.

Capture of Cell Location and Identity with Spatial
Transcriptomics
Spatial transcriptomics techniques collect multimodal data by

measuring both single-cell transcriptome and position. Coupling

cell identity to location via these methods offers the missing link

to integrate single-cell datasets with live imaging to create a

comprehensive, high-dimensional single-cell atlas of the devel-

oping embryo, which we explore shortly. Following the advent

of scRNA-seq, the drive to preserve or incorporate cellular

location and phenotype into these datasets grew to further our

understanding of how tissue structure is related to cellular het-

erogeneity. Next, we review progress in this nascent field and

how live imaging is poised to create integrative fate maps to

interrogate development.

Similar to scRNA-seq, spatial transcriptomics has recently

seen tremendous gains in scale. Single-molecule fluorescence

in situ hybridization (smFISH) was one of the first demonstrations

of spatial transcriptomics with sufficient resolution to evaluate

differences between cells based on transcript numbers

(Figure 4A) (Femino et al., 1998). In 2015, Chen et al. introduced

multiplexed error-robust fluorescence in situ hybridization

(MERFISH) as a massively scaled-up application of smFISH.

MERFISH deploys elegant multiplexing and encoding to over-

come the limited number of fluorophores that can be imaged

by previous smFISH approaches. Using a combinatorial labeling

approach, MERFISH associates unique barcodes with individual

transcripts, where these barcodes are built up one bit at a time

and read via sequential rounds of hybridization and imaging

(Chen et al., 2015) (Figure 4B). This approach overcomes the

need to resolve a broad color palette and, combined with auto-

mation of the readout and sequencing process, exponentially in-

creases the number of unique transcripts identified (Chen et al.,

2015; Moffitt et al., 2018). SeqFISH (Lubeck et al., 2014) is a

similar technique that was adapted using microfluidics to sup-

port multiple rounds of hybridization (Shah et al., 2016).

Recently, this method has been developed further as SeqFISH+,

where sequential hybridization effectively expands the barcode

base palette to 60 ‘‘pseudocolors,’’ increasing the scale and res-

olution of transcript detection (Figure 4C) (Eng et al., 2019). It is

noteworthy that dropout of transcripts, i.e., expressed genes

that are not detected, a limitation of scRNA-seq, is much less

likely to occur in these smFISH-based protocols (Torre

et al., 2018).

In situ sequencing offers another variety of spatial transcrip-

tomics that does not rely on smFISH technology. For example,

FISSEQ (fluorescent in situ RNA sequencing) couples RNA

amplification with SOLiD (sequencing by oligonucleotide ligation

and detection) sequencing within intact tissue to read transcript

identity and position (Lee et al., 2014). Beyond FISSEQ, multiple

other methods have evolved that use libraries of targeted

probes, which allow improved coverage of the transcripts of

interest (Chen et al., 2018; Iyer et al., 2018; Wang et al.,

2018). While in situ sequencing offers subcellular specificity

and the ability to sequence transcripts within tissue samples,
Developmental Cell 56, January 11, 2021 15
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Figure 4. Spatial Transcriptomics Technologies
Visual comparison of the predominant techniques for measuring transcriptional expression in cells while maintaining spatial context.
(A) smFISH is used by hybridizing fluorophore-conjugated DNA probes to RNA within fixed cells and then imaging to capture the fluorescent readout.
(B) MERFISH uses a double-tagged probe for error detection with many rounds of hybridization. Through rounds of hybridization, the multiple reads that are
generated are indicative of sequences present in the transcript and can identify them at sub-cellular resolution and is only limited by diffraction.
(C) SeqFISH+ is a technique conceptually similar to MERFISH but instead utilizes calculated ‘‘pseudocolors’’ that are assigned to each transcript that can be
detected with the probe library.
(D) Slide-seq utilizes a UMI puck, directly adapted from UMI beads used for scRNA-seq, by arranging these beads into a single layer ‘‘puck’’ and directly slicing
tissues onto the beads, transcripts can be hybridized to the UMI-containing oligos on the beads and sequenced similarly to scRNA-seq. Spatial maps of
transcript expression can be generated based on the original UMI bead position.
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probe-based approaches such as MERFISH and SeqFISH+ are

perhaps more scalable, albeit generally constricted by targeted

libraries of probes.

In an alternate approach, Slide-seq uses positionally map-

ped DNA barcodes (unique molecular identifiers, or ‘‘UMIs’’)

to capture transcriptomes across a section of tissue, retaining

spatial information at near single-cell resolution (Rodriques

et al., 2019). Slide-seq takes the earlier UMI beads used for

cell capture by microfluidics (Macosko et al., 2015) but at-

taches them to a coverslip to form a ‘‘puck’’ of barcoded

beads whose sequence is associated with specific two-

dimensional coordinates. Following the placement of a thin

tissue section onto the puck, transcripts from the cells hybrid-
16 Developmental Cell 56, January 11, 2021
ize to the barcoded beads. Subsequent library preparation

and sequencing enable the association of transcripts with

specific barcodes, which in turn allows the deduction of their

original location to within 20 mm (Figure 4D). The main draw-

back of Slide-seq is its limited resolution and low transcript

detection sensitivity. For example, around one-third of

sequenced beads capture mRNA from two different cell types,

suggesting that single-cell resolution is not achieved. Addi-

tionally, less than 100 transcripts are captured per bead,

although recent technical improvements to the reverse tran-

scription step have increased this to over 500 transcripts

per bead (Stickels et al., 2020). Another limitation is the tissue

destruction that accompanies this approach, precluding the
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collection of valuable phenotypic data via imaging, which is an

essential component for constructing fate maps.

Genomic Techniques to Capture Cell Location and
Lineage
While spatial transcriptomics serves to survey broad gene

expression patterns within intact tissue, targeted genomic

technologies exist to couple cell position with retrospective

lineage tracing. Memory by engineered mutagenesis with op-

tical in situ readout (MEMOIR) uses CRISPR-Cas9-based tar-

geted mutagenesis to randomly edit barcoded recorder ele-

ments called ‘‘scratchpads’’ (Frieda et al., 2017). Read by a

specialized set of smFISH probes, these targeted sequences

accrue mutations over time to record lineage while retaining

spatial information (Figure 3C). Advancing on MEMOIR,

Zombie dispenses with reliance on barcode transcription by

using T7 phage RNA polymerases to transcribe scratchpads

after tissue fixation. This approach eliminates any detrimental

effects that may occur due to the constitutive expression of

barcodes within living cells and sidesteps the issue of

silencing, as discussed earlier (Askary et al., 2019). In more

recent work, IntMEMOIR leverages serine integrase-induced

barcode editing, using smFISH to read edits in parallel with

fluorescence reporter expression and a GAL4-UAS system

to restrict labeling to specific cell types (Chow et al., 2020).

Because IntMEMOIR incorporates a three-state memory

element, tens of thousands of unique labels can be gener-

ated—an order of magnitude greater than MEMOIR. However,

these methods will likely be underutilized until broader tran-

scriptome analysis is incorporated. Indeed, if coupled with

spatial transcriptomics, these integrated approaches can act

as a connection to tether datasets together by cell lineage.

TOWARD AN INTEGRATIVE FATE MAP TO
INTERROGATE DEVELOPMENT

The genomic technologies we have discussed so far enable the

measurement of cell identity and lineage relationships, at sin-

gle-cell resolution. Furthermore, the most recent of these

methods preserve spatial and phenotypic information to yield

high-dimensional insights into cell identity. Together, these ap-

proaches have supported significant advances in lineage

tracing, offering new insight into embryonic development and

beyond. Next, we address the strengths and limitations of

these techniques for constructing fate maps—schematics rep-

resenting the developmental potential of specific cells or re-

gions of cells within an embryo at a defined stage, as outlined

at the beginning of this review. For the construction of a fate

map, cells must be traced throughout development, in a non-

destructive manner. However, current fate mapping ap-

proaches yield relatively limited ‘‘low-dimensional’’ information

on cell identity and state. In contrast, the range of genomic

technologies we have explored in this review has the potential

to generate high-dimensional fate maps, but these methods

universally rely on cell destruction or fixation. An integrative

approach will be essential to overcome these limitations, to

generate high-resolution fate maps that are transcriptionally,

spatially, and temporally defined. Below, we outline the critical

components of this integrative approach.
Advances in Cell Imaging for High-Resolution, Non-
invasive Cell Tracking
The ability to directly visualize and track cells has played a cen-

tral role in fate mapping and lineage tracing since their concep-

tion. Indeed, time-lapse microscopy has supported the non-

destructive, direct observation of embryonic development over

time (Stern and Fraser, 2001). Light-sheet microscopy has

proven fundamental to increasing our ability to probe deeper

into tissue because it can image sections of tissue without

inducing photodamage (Huisken et al., 2004; Pantazis and Su-

patto, 2014). The first light-sheet microscope allowed optical

sectioning within living fish embryos, with greater tissue depth

and resolution than confocal laser scanning microscopy,

demonstrating the promise of this imaging technique (Huisken

et al., 2004). Modifications to light-sheet microscopy have

further advanced imaging depth capabilities, overcoming the

limitations that initially hindered large or pigmented embryos

from being studied. By utilizing these advanced techniques, ze-

brafish (Keller et al., 2008), fly (Krzic et al., 2012), and evenmouse

embryos (McDole et al., 2018) have been viewed in toto,

throughout their morphogenesis. These studies have offered dy-

namic single-cell atlases of embryonic development, preserving

cell lineage relationships, and will be central to any integrative

fate map.

However, the utility of live imaging goes far beyond lineage

and positioning, leading to a branch of study called phenomics.

Phenomics encompasses any phenotypic observation made via

imaging, such as cell migration patterns and speed, cell shape,

and fluorescently labeled proteins (Grys et al., 2017; Nketia

et al., 2017; Pantazis and Supatto, 2014). As a result, the dimen-

sionality of the data captured by live imaging increases. Indeed,

there is a wealth of phenotypic information that can be captured

via non-destructive label-free imaging approaches aside from

visually tracking cell lineage and position. Differential interfer-

ence contrast (DIC), phase contrast, and dark-field microscopy

are all able to capture distinct morphological characteristics

that can be identified and analyzed via deep learning (Grys

et al., 2017; Nketia et al., 2017). Characteristics such as cell

size, density, and more are collected, increasing the dimension-

ality of the dataset. Ultimately, this has supported machine

learning approaches to predict protein expression and localiza-

tion in cells based on light microscopy images alone (Christian-

sen et al., 2018).

Data Integration to Synthesize High-Dimensional,
Dynamic Fate Maps
Despite being able to add dimensionality to fate maps ac-

quired by the above label-free imaging approaches, it would

remain challenging to reach a similar richness of dimension-

ality compared with genomics-based lineage tracing ap-

proaches. These latter tools, such as scRNA-seq and

spatial transcriptomics, typically capture the expression of

thousands of transcripts within individual cells. This increase

in dimensionality supports much more nuanced descriptions

of cell identity and state, and the molecular mechanisms

underpinning their regulation. By coupling live imaging to sin-

gle-cell transcriptomics, positional and temporal data can

be added to the multidimensional transcriptomic readouts.

Since cellular location and developmental context impact
Developmental Cell 56, January 11, 2021 17
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Figure 5. Data Integration to Construct High-
Dimensional, Dynamic Fate Maps
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create high-dimensional fate maps, where cell
identity, state, lineage, and behavior can be probed
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transcriptional regulation, a greater understanding of these

characteristics’ interdependence can be gleaned. Further-

more, scLT data can be evaluated in tandem with live imag-

ing-based lineage tracing, allowing rigorous interrogation of

cell lineages. However, it is not currently possible to experi-

mentally combine these high-resolution genomic strategies

with non-destructive live imaging; thus, computational inte-

gration approaches will fulfill an essential role in this respect.

Beyond RNA capture, a suite of genomic technologies tomea-

sure the transcriptome, epigenome, and proteome now exist

(Stuart and Satija, 2019). While experimental methods to capture

these different properties from the same individual cell are

rapidly developing, computational approaches to integrate

different data modalities, ‘‘multi-omics,’’ captured across inde-

pendent experiments are emerging (Stuart et al., 2019). These

tools are similar to the above approaches to infer cell position

from scRNA-seq, based on known in situ gene expression pat-

terns. A critical aspect of these latest tools is the compilation

of ‘‘anchors,’’ a core set of transcripts measured across different

datasets in order to merge them (Stuart et al., 2019). Indeed,

many methods exist to combine scRNA-seq data with different

modalities, though they typically use scRNA-seq data as a refer-

ence to tie together the multimodal information (Efremova and

Teichmann, 2020).

The construction of a high-dimensional, dynamic fate map will

require the computational integration of several distinct, comple-

mentary datasets (Figure 5). The first component is live imaging

for high-resolution capture of cell position, phenotype, and line-

age relationships across a specified developmental period. Sec-

ond, scRNA-seq at defined stages throughout this develop-

mental period should also be collected. The third crucial

component to bridge these datasets, enabling their integration,

is spatial transcriptomics. By gathering information on the

expression of key anchor genes, represented by 100–1,000s of

transcripts, preserving cell position and phenotype at defined

stages of development, live imaging and transcriptomics can

be merged. Thus, for each cell during its development, high-
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dimensional information on gene expres-

sion can be inferred. Furthermore, this

approach has the potential for the integra-

tion of other modalities. The result will be a

high-dimensional fate map, where cell

identity, state, lineage, and behavior can

be probed at any stage. Together, this

would facilitate improved modeling of

embryonic development, creating exciting

opportunities to interrogate molecular

perturbations across multiple levels of

regulation, enabling enhanced in silico
experimentation. Additional modeling at the cellular level would

also support sophisticated probabilistic modeling of develop-

ment. Indeed, such in silico strategies would constitute a signif-

icant force to guide scientific inquiry because they provide func-

tional and mechanistic hypotheses for further experimental

investigation and validation.
CONCLUDING REMARKS

Since the first fate map was recorded at the beginning of the 20th

century, the lineage tracing toolbox has evolved from simple

observation to recorded live imaging, single-cell resolution line-

age tracing, and retrospective computational analysis. Indeed,

the technologies required to build high-dimensional fate maps

now exist: a visual dynamic fate map for the post-implantation

mouse embryo has been captured (McDole et al., 2018); technol-

ogies to capture multi-omics data in parallel with single-cell

transcriptomics have been developed (Stuart and Satija, 2019);

single cells from transcriptomic datasets can be resolved to

spatial coordinates (Moffitt et al., 2018; Nitzan et al., 2019);

finally, diverse datasets can be computationally integrated

based on common characteristics (Efremova and Teichmann,

2020; Stuart et al., 2019). Thus, this next generation of fate

mapping is poised to help us more deeply comprehend how

cell identity is regulated within the context of a developing organ-

ism. Moreover, these high-resolution, dynamic models will aid in

building a quantitative understanding of the rules governing em-

bryonic development.
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