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Abstract

Recovery of cardiac function is the holy grail of heart failure therapy yet is infrequently observed 

and remains poorly understood. In this study, we performed single-nucleus RNA sequencing 

from patients with heart failure who recovered left ventricular systolic function after left 

ventricular assist device implantation, patients who did not recover and non-diseased donors. We 

identified cell-specific transcriptional signatures of recovery, most prominently in macrophages 

and fibroblasts. Within these cell types, inflammatory signatures were negative predictors of 

recovery, and downregulation of RUNX1 was associated with recovery. In silico perturbation of 

RUNX1 in macrophages and fibroblasts recapitulated the transcriptional state of recovery. Cardiac 

recovery mediated by BET inhibition in mice led to decreased macrophage and fibroblast Runx1 

expression and diminished chromatin accessibility within a Runx1 intronic peak and acquisition 

of human recovery signatures. These findings suggest that cardiac recovery is a unique biological 

state and identify RUNX1 as a possible therapeutic target to facilitate cardiac recovery.

Heart failure (HF) is a growing epidemic that affects over 23 million individuals worldwide 

and imparts a substantial burden on healthcare systems1,2. Restoration of cardiac function, 

a phenomenon referred to as cardiac recovery, represents the holy grail for HF therapies. 

Cardiac recovery is characterized by restoration of left ventricular (LV) systolic function 

and reversal of LV dilatation, a process termed LV reverse remodeling. Cardiac recovery is 

infrequently observed after initiation of goal-directed medical therapy in ambulatory patients 

and implantation of left ventricular assist devices (LVADs) in patients with advanced 

HF3–6. Individuals who experience cardiac recovery have markedly improved survival and 

quality of life7,8. At present, much remains to be learned about cardiac recovery, including 

the underlying cellular and molecular mechanisms, features that distinguish patients with 

HF who will experience recovery from those who will continue to experience disease 

progression and whether cardiac recovery represents a reversion to normal or a unique 

biological state9. Unraveling the molecular basis of cardiac recovery in humans may help 

identify new therapeutic targets for HF.

The advent of next-generation sequencing has afforded researchers new opportunities to 

dissect the cellular diversity of human tissue across disease contexts10,11. Recent studies 

have used single-nucleus RNA sequencing (snRNA-seq) from healthy and failing human 

hearts to greatly expand our understanding of human HF and have identified cell-specific 

transcriptional signatures in genetic, dilated and hypertrophic cardiomyopathies12–17. 

Although some studies have explored mechanical unloading of the heart, there is a paucity 

of information regarding cardiac recovery at the single-cell level. In particular, two studies 

used gene expression profiling to explore the bulk molecular signature of mechanical 

unloading after LVAD implantation18,19. These studies revealed that the transcriptional 

profile of the unloaded heart differs from the non-failing donor and HF. However, neither 

study included samples from patients who recovered. More recently, Drakos et al.20 
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performed bulk RNA sequencing and proteomics in non-failing hearts and 92 patients with 

HF at the time of LVAD implantation (25 recovered after a period of mechanical unloading) 

to characterize features predictive of myocardial recovery. However, this study does not 

characterize the hearts once they recover. Designing and executing a study focused on 

cardiac recovery is challenging and must be carefully performed to discriminate cardiac 

recovery from mechanical unloading. To rigorously identify individuals who exhibit cardiac 

recovery, patients must undergo extensive phenotyping before and after LVAD implantation, 

and paired tissue specimens from the same patient need to be collected from similar regions 

in the LV at the time of LVAD implantation and at the time of LVAD explant.

In the present study, we defined the cellular and transcriptional landscape of cardiac 

recovery using snRNA-seq. We compared non-diseased donor controls to patients with HF 

who experienced either cardiac recovery or ongoing HF before and after LVAD implantation 

(n = 40). By performing cell-specific pseudobulk differential expression analysis at the 

patient level, we uncovered that cardiac recovery represents a unique biological state, and we 

defined cell-specific signatures of cardiac recovery that were distinct from both healthy and 

failing hearts. We further showed that transcriptional changes of cardiac recovery were most 

prominent within macrophages and fibroblasts. We identified a RUNX1 gene regulatory 

network (GRN) in macrophages and fibroblasts that was associated with, and predictive 

of, cardiac recovery using a deep neural network. In silico perturbation analysis21 revealed 

that RUNX1 activity in macrophages and fibroblasts was predicted to control transition 

of cell states toward those associated with recovery and away from those associated with 

progressive HF. Finally, we leveraged a mouse model of cardiac recovery22 to test the role 

of the Runx1 GRN in cardiac recovery. These findings uncover the biological state and 

generate a hypothesis for cell-specific mechanisms that contribute to cardiac recovery, and 

they identify RUNX1 as a potential therapeutic target to facilitate cardiac recovery.

Results

snRNA-seq defines the cellular landscape of cardiac recovery

We performed snRNA-seq on paired transmural LV specimens obtained from the apical 

anterior wall of age-matched and sex-matched donor controls (n = 14) and patients with 

HF at the time of LVAD implant and at the time of LVAD explant. Patients with HF were 

divided into those who recovered LV systolic function (recovery/reverse remodeled (RR), n 
= 5) and those who demonstrated persistent reduction in LV ejection fraction (mechanically 

unloaded (U), n = 8). Echocardiograms after LVAD implant were performed using a 

predefined protocol where the LVAD speed was reduced to assess intrinsic LV systolic 

function23,24 (Fig. 1a). After doublet removal and quality control (QC) (Extended Data Fig. 

1), we recovered 185,881 nuclei across 40 patient samples. We then performed dimensional 

reduction, uniform manifold approximation and projection (UMAP) construction and cell 

clustering with differential gene expression to annotate cell types (Fig. 1b). We identified 

13 transcriptionally distinct cell types marked by canonical gene markers (Fig. 1c, Extended 

Data Fig. 2a and Supplementary Table 4). We also constructed cell-type-specific gene 

set scores and detected strong separation across clusters (Extended Data Fig. 2b,c). Cell 

composition analysis showed a drop in cardiomyocytes and an increase in the stromal 
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cell fraction in HF pre-LVAD and post-LVAD samples relative to controls (Fig. 1d and 

Extended Data Fig. 2d). Echocardiographic data revealed the maked difference in LV 

ejection fraction after LVAD implant between the recovered and unloaded groups (Fig. 

1e). We then performed cell-type-specific pseudobulk differential gene expression analysis 

using the following comparisons: pre-LVAD HF (U-pre and RR-pre) versus donor, recovery 

post-LVAD (RR-post) versus pre-LVAD HF and RR-post versus donor (Extended Data Fig. 

3a,b).

To place this differential expression (DE) analysis in the context of the different facets of 

cardiac recovery, we built a Venn diagram of overlapping differentially expressed genes 

(Supplementary Tables 5–7) to identify three key categories relevant to the response to HF 

and cardiac recovery: (1) genes expressed specifically during recovery (recovery genes); 

(2) genes associated with HF that were persistently changed (HF persistent genes); and (3) 

genes associated with HF that returned to normal (HF reversed genes) (Fig. 1f). To identify 

cell types that may drive cardiac remodeling, we created pairwise scatter plots of the number 

of differentially expressed genes from the three comparisons (Fig. 1g). Within the majority 

of cell types, HF persistent and HF recovery genes were found at higher frequency than HF 

reversed genes, indicating that the recovered state is not simply a reversion to normal but 

also a unique biological entity.

Cell-type-specific signatures of cardiac recovery

To dissect which cell types display the strongest signature of recovery, we quantified the 

number of recovery genes upregulated and downregulated in each cell type. Among the 

major cell populations, myeloid cells (monocytes, macrophages and dendritic cells) and 

fibroblasts had the greatest number of recovery genes (Fig. 2a,b and Extended Data Fig. 3c). 

We then constructed heat maps of the top 25 upregulated and downregulated recovery genes 

in the cell types with the strongest recovery signatures (myeloid, fibroblast, endothelium, 

endocardium and cardiomyocyte) and observed consistent and robust enrichment within the 

RR-post group. We observed modest enrichment of the recovery signature within the U-post, 

suggesting that mechanical unloading may produce an intermediate phenotype within the 

continuum of recovery (Fig. 2c). To validate our recovery signature in an independent 

dataset, we leveraged bulk RNA sequencing from Drakos et al.20. We trained a random 

forest (RF) classifier to predict recovery from bulk RNA sequencing profiles taken at the 

time of LVAD implantation and ranked feature importance based on mean decrease in 

impurity. Using the top-ranked genes, we calculated the number of overlapping genes with 

our cell-specific recovery signatures and found that myeloid cells and fibroblasts had the 

strongest overlap (Fig. 2d).

To assess whether the transcriptional signature of recovery is unique to each cell type, we 

quantified the number of recovery genes that overlap in more than one cell type across the 

five major populations and found that most of the identified recovery genes are specific 

to a given cell type (Fig. 2e). UpSet plots were constructed to assess pairwise overlap of 

cardiac recovery genes among different permutations of the major cell types (Extended 

Data Fig. 4). Although the dominant signatures were cell type specific, we found five 

upregulated (PTPN13, FKBP5, ZBTB16, FGD4 and ZMYND8) and one downregulated 
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(CTD-3252C9.4) recovery genes common to the five major cell types (Fig. 2f). To ascertain 

whether cell-type-specific cardiac recovery signatures are associated with LV systolic 

function after LVAD implant, we performed a linear regression analysis using LV ejection 

fraction as a surrogate for systolic function. We identified strong correlations between the 

ejection fraction and upregulated and downregulated recovery signatures (Fig. 2g). These 

findings indicate that transcriptional signatures of cardiac recovery are cell type specific and 

are reflective of a continuum of cardiac recovery. Polygenic predictors for cardiac recovery 

can be derived for any of the major cell types (Fig. 2f), which highlights that each of the 

main cell types enters a distinct state across the continuum of recovery.

Cardiomyocytes do not revert to a healthy state in cardiac recovery

To dissect the recovery landscape across cell populations, we performed a pseudobulk 

principal component analysis (PCA) at the sample level (Extended Data Fig. 5). We 

observed a strong separation between donor and HF samples across most cell types. 

Intriguingly, for cardiomyocytes, post-U and post-RR cardiomyocytes clustered with 

pre-LVAD HF cardiomyocytes, suggesting a persistence of the HF phenotype during 

both recovery and mechanical unloading (Fig. 3a). To delineate whether recovery is 

associated with particular cardiomyocyte states, we performed high-resolution clustering 

of cardiomyocytes. We detected five distinct cardiomyocyte cell states with unique 

transcriptional signatures and pathway enrichment (Fig. 3b–e and Supplementary Table 8).

Gaussian kernel density plots showed shifts in cell states among pre-LVAD HF, U-post 

and RR-post conditions (Fig. 3f). We then created a pseudobulk heat map of canonical 

genes upregulated and downregulated in HF13,14 and found that many HF genes are 

persistently dysregulated in recovered cardiomyocytes. Genes associated with the non-

diseased donor state do not return to normal levels in recovery. Of note, reduced expression 

of NPPA and ANKRD1 was observed in pre-LVAD and post-LVAD implant in patients 

who recovered compared to those who did not recover, suggesting that the cardiomyocyte 

substrate may influence the propensity for recovery (Fig. 3g). We validated key findings 

using in situ hybridization. Compared to donor controls, the number of MYH6-expressing 

cardiomyocytes was reduced in all pre-LVAD and post-LVAD HF samples. Consistent with 

our psudobulk analysis, the number of NPPA-expressing cardiomyocytes was significantly 

increased in U-pre and U-post HF samples compared to donors. Modest trends were 

observed in RR-pre and RR-post samples (Fig. 3h–i). MYH6 and NPPA expression was 

enriched in CM0 and CM1, respectively (Fig. 3j).

Using the upregulated and downregulated genes in recovery from our pseudobulk analysis, 

we created a recovery signature for cardiomyocytes that demonstrated selective enrichment 

in RR-post group (Fig. 3k,m). To examine transcription factors that may modulate recovery, 

we used EnrichR to find transcription factors predicted to regulate genes upregulated and 

downregulated in recovery. Notably, we observed upregulation of a GATA4-associated 

transcriptional network (Fig. 3l) and downregulation of transcription factors associated 

with inflammation (STAT3, JUNB, JUND and NFKB1) in recovery (Fig. 3n). The gene 

signature downregulated in recovery was most enriched in the CM2 subset, which expressed 

canonical HF genes, including ANKRD1 and NPPA (Extended Data Fig. 6a). Among the 
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genes downregulated in cardiac recovery, ABRA was also expressed in CM2 and found to 

be reduced in patients with HF who recovered pre-LVAD and post-LVAD implant (Extended 

Data Fig. 6b,c). To validate that reduced cardiomyocyte ABRA expression is predictive of, 

and associated with, cardiac recovery, we performed in situ hybridization. Quantification of 

ABRA-expressing cardiomyocytes confirmed reductions in RR-pre and RR-post compared 

to U-pre and U-post groups (Extended Data Fig. 6d,e). Collectively, these findings suggest 

that, in recovery, cardiomyocytes show strong transcriptional changes and enter a new state 

that is distinct from both healthy and HF states.

Inflammatory macrophages preclude functional recovery

Pseudobulk PCA identified that RR-post myeloid cells clustered independently from donor 

or pre-LVAD HF myeloid cells, indicating a strong transcriptional signature of recovery in 

the myeloid compartment. U-post myeloid cells clustered with both RR-post and pre-LVAD 

myeloid cells, consistent with the finding that recovery transcriptional signatures identify a 

spectrum of recovery (Fig. 4a). To decipher elements of cardiac recovery encoded in the 

monocyte, macrophage and dendritic cell compartment, we subclustered and identified nine 

distinct cell states with unique transcriptional signatures and pathway enrichment (Fig. 4b,c, 

Extended Data Fig. 7a,b and Supplementary Table 9). Cell composition analysis showed 

expansion of Mac1 (SPP1 and TPRG1) and Mac2 (PLAUR and FOSB) and reduction of 

Mac5 in the U-pre and U-post groups relative to donors and RR-pre and RR-post groups 

(Fig. 4b and Extended Data Fig. 7d). We next plotted the myeloid recovery signature (Fig. 2) 

in the UMAP space split by donor, pre-LVAD HF, U-post and RR-post groups and observed 

a strong enrichment in the RR-post group and modest expression in the U-post group. The 

recovery signature was evident within all myeloid cell clusters (Fig. 4d). To functionally 

classify the recovery signature, we performed pathway analysis (EnrichR, WikiPathways 

database) and detected enrichment for EGF, HGF, androgen receptor, oncostatin M and 

glucocorticoid receptor signaling (Extended Data Fig. 7c).

We previously identified a role for cardiac resident macrophages in adaptive remodeling 

of the heart25–27. To assess whether cardiac resident macrophages are involved in cardiac 

recovery, we generated ridge plots and found that CD163 (specific marker of cardiac 

resident macrophages) expression was decreased pre-LVAD HF groups compared to donor 

controls. Interestingly, CD163 expression was restored to normal levels in the RR-post 

group, whereas the U-post group displayed an intermediate phenotype (Fig. 4e). We 

validated our sequencing findings by performing in situ hybridization for CD163 across 

patient groups. We observed a marked reduction in the number of CD163+ cells in pre-

LVAD HF samples compared to donors. CD163+ cells increased to near-normal levels in the 

RR-post group and modestly increased in the U-post group (Fig. 4f). To delineate whether 

CD163 expression identifies a continuum of recovery, we performed a linear regression 

analysis of LV ejection fraction versus pseudobulk CD163 expression at the patient level and 

found a modest correlation (R2 = 0.21, P = 0.03) (Fig. 4g).

To dissect whether certain transcription cell states of myeloid cells predict recovery before 

LVAD implantation, we constructed a Gaussian kernel density plot of cell number in the 

pre-LVAD HF group split by U-pre and RR-pre conditions (Fig. 4h). Intriguingly, we 
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found that the Mac2 cluster was overrepresented in the U-pre condition. Quantification of 

Mac2 composition across individual patients confirmed expansion of this population in the 

U-pre relative to donor and RR-pre groups (Fig. 4i and Extended Data Fig. 7d). Mac2 

represented an inflammatory population that expressed PLAUR and several chemokines and 

cytokines (Fig. 4b and Extended Data Fig. 7a,b). To assess differences in inflammatory gene 

expression between U-pre and RR-pre groups, we constructed and plotted an inflammation 

gene set score (IL1A, IL1B, TNF, AREG, EREG, CXCL2, CXCL3, CCL3 and CCL4) in 

UMAP space. The inflammatory signature was localized to the Mac2 population and was 

present selectively in the U-pre group (Fig. 4j), suggesting that the presence of inflammatory 

macrophages is a negative predictor of cardiac recovery.

To decipher the origin of Mac2, we performed pseudotime analysis using Palantir in the 

HF samples and identified three terminal monocyte-derived states: Mac2, cDC2 and Mono2 

(Fig. 4k,l). Cell density plots showed strong phenotype shifts between each pre-LVAD and 

post-LVAD group when viewed in a force-directed layout (FDL) space (Fig. 4l). Consistent 

with the above findings, we observed an enrichment for Mac2 in the U-pre group. Notably, 

post-LVAD implantation RR-post converged toward a Mac5 phenotype, whereas U-post 

displayed a divergence toward Mac5 (F13A1 and CD163), Mac2 (PLAUR and FOSB) and 

Mac4 (IFI44L and MX2) (Fig. 4b,l). In particular, the RR-post group converged toward 

a phenotype marked by enriched CHKA expression (Fig. 4m). This population largely 

consisted of CD163+ cardiac resident macrophages. We next plotted MAGIC-imputed gene 

expression for CHKA, PLAUR and RUNX1 along pseudotime within the Mac2 lineage. 

We observed a monotonic increase in PLAUR and RUNX1 expression and decreased 

CHKA expression as the cell differentiated toward Mac2 (Fig. 4m), highlighting competing 

differentiation trajectories between HF and recovery.

To dissect regulatory changes that may underlie transcriptional signatures of HF and 

recovery in myeloid cells, we performed transcription factor enrichment analysis with 

DoRothEA28 in the U-post and RR-post groups. Transcription factors associated with 

inflammation (RUNX1, NFKB1, NFKB2, STAT3, ATF2 and JUN) were enriched in 

myeloid cells from the U-post group (Extended Data Fig. 7e and Supplementary Table 

18). Quantification of RUNX1 expression at the patient level via pseudobulk analyses 

revealed increased RUNX1 expression in the donor, pre-LVAD HF and U-post groups. 

The expression of RUNX1 was markedly diminished in the RR-post group relative to all 

other groups (Fig. 4n)—these results suggest that RUNX1 downregulation may modulate 

macrophage phenotype toward a unique state unlike a healthy or failing heart. We next 

performed a linear regression for LV ejection fraction versus RUNX1 pseudobulk expression 

and found a strong negative correlation (R2 = 0.43, P = 0.001) (Fig. 4o). To assess the 

interplay between RUNX1 and recovery, we plotted a pseudobulk heat map of RUNX1 
target genes that were differentially expressed between U-pre and RR-pre groups and 

identified numerous pro-inflammatory mediators that were enriched in the U-pre group. 

Collectively, these analyses highlight the possibility that RUNX1 may prevent recovery by 

promoting pro-inflammatory gene expression in macrophages (Extended Data Fig. 7f).
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Cardiac fibroblast remodeling in cardiac recovery

Cardiac recovery is associated with reductions in myocardial fibrosis29,30. To ascertain 

how cardiac fibroblasts shift during recovery, we first performed a pseudobulk PCA. 

Donor samples clustered separately from the pre-LVAD and post-LVAD groups. A modest 

separation was also observed between the RR-post group and the pre-LVAD HF group 

(Fig. 5a). We then subclustered the fibroblasts into eight cell states (Fig. 5b) marked by 

distinct transcriptional signatures (Fig. 5c, Extended Data Fig. 8a,b and Supplementary 

Table 10). Cell composition and density analysis demonstrated that Fib1 (SCN7A) was 

enriched in donors, whereas Fib3 (POSTN, THBS4 and MEOX1) and Fib7 were enriched 

in HF (GPC6) (Fig. 5d). Pathway analysis revealed enrichment in genes associated with 

extracellular matrix remodeling in Fib3 and actin binding in Fib7 (Extended Data Fig. 

8c). To assess whether recovered fibroblasts represent a reversion to the normal state, 

we generated a heat map of genes enriched in donor control and HF fibroblasts at the 

pseudobulk level. This analysis revealed the presence of both persistently dysregulated genes 

(SVEP1, FAP, POSTN, GPX3 and APOD) and normalized genes (MEOX1, TGFBR3, 

ACSM3 and PID1) in recovered fibroblasts (Fig. 5e). Consistent with these findings, in situ 

hybridization for POSTN revealed persistence of this fibroblast population during recovery 

(Fig. 5o). We then generated ridge plots of the fibroblast-specific recovery signature and 

detected an enrichment within the RR-post group (Fig. 5f–h). Gene Ontology (GO) of the 

top genes upregulated in recovery suggested associations with cytoskeletal organization, 

glucose homeostasis and receptor tyrosine kinase signaling (Fig. 5g and Supplementary 

Table 11). Conversely, the top pathways downregulated in recovery included TNF-α/NF-κB 

and TGF-β signaling (Fig. 5i and Supplementary Table 12).

To identify cardiac fibroblast transcriptional changes that predict recovery, we performed 

pseudobulk DE analysis between the RR-pre and U-pre groups. We detected multiple robust 

differences between groups, including multiple genes association with inflammation (JUNB, 

CXCL2, KLF2, KLF4, ISG20 and FOSL2) increased in the U-pre group (Fig. 5j). Pathway 

analysis of dysregulated genes showed strong upregulation of TNF-α/NF-κB, inflammatory 

response, TGF-β, IFN-γ and IL-6/ STAT3 pathways (Fig. 5k and Supplementary Table 13).

To explore transcriptional programs that may drive recovery, we examined ENCODE/ChEA 

consensus transcription factors from the ChIP-X database and identified RUNX1 as the 

most downregulated transcription factor during recovery. We then plotted a heat map 

of genes predicted to be regulated by RUNX1 during recovery and identified a strong 

downregulation in the RR-post group (Fig. 5l and Supplementary Table 14). Given the 

above changes observed in RUNX1 expression, predicted activity and TGF-β enrichment, 

we leveraged published PRO-seq data from in vitro fibroblasts stimulated with TGF-β 
to assess the level of active transcription around the RUNX1 locus. We found increased 

RNA polymerase activity at the RUNX1 locus after TGF-β stimulation relative to an 

unstimulated control (Fig. 5m), suggesting that TGF-β signaling may regulate RUNX1 
expression in cardiac fibroblasts. Next, we sought to delineate RUNX1 expression across 

fibroblast cell states. Density plots revealed that RUNX1 was expressed in Fib3 along with 

genes known to contribute to myocardial fibrosis, including POSTN, FAP and MEOX1 
(refs. 22,31,32). Linear regression of ejection fraction versus pseudobulk RUNX1 expression 
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showed a negative correlation (R2 = 0.15, P = 0.07) (Fig. 5n). To explore a link between 

macrophage inflammatory gene expression and associated RUNX1 expression in fibroblasts, 

we performed a linear regression of fibroblast-specific RUNX1 expression versus the 

macrophage inflammatory score (Fig. 4n) and observed a correlation at the patient level (R2 

= 0.38, P = 0.04) (Fig. 5p). These results suggest that elevated inflammation in macrophages 

in U-pre relative to RR-pre may hinder cardiac recovery by modulating RUNX1 expression 

in fibroblasts.

RUNX1 GRN is associated with recovery

To decipher the potential contribution of RUNX1 toward promoting the recovery phenotype, 

we performed the following analyses. First, we validated changes in RUNX1 expression 

in stromal cells across groups using in situ hybridization. Quantitation of the number of 

RUNX1+ stromal cells per ×10 field revealed that there were greater numbers of RUNX1+ 

cells in the pre-LVAD HF and U-post groups relative to donors. The RR-post group 

displayed reduced numbers of RUNX1+ cells relative to the pre-LVAD HF groups and was 

similar to donors (Fig. 6a,b). Next, we assessed whether RUNX1 target gene expression 

(Supplementary Table 15) is predictive of cardiac recovery using deep learning. We split the 

pre-LVAD HF group (U-pre and RR-pre) into a training set and a test set, built and trained 

a Keras classifier model (detailed in the Methods section) and applied the model in the test 

set to predict whether nuclei from recovered samples were derived from the U-pre or RR-pre 

patients (Fig. 6c). We also trained an RF classifier as a comparator to our Keras model. 

We found that both the Keras model and the RF classifier predicted recovery. The Keras 

model had a higher area under the curve (AUC) than the RF classifier in predicting recovery 

(myeloid: Keras = 0.945, RF = 0.789; fibroblast:Keras = 0.942, RF = 0.836) (Fig. 6d,e). We 

then tested whether perturbation of RUNX1 could facilitate recovery in human macrophages 

and fibroblasts. We used CellOracle21,33 to build cell-specific GRNs and performed an in 

silico deletion of RUNX1. To define directional changes in cell fate resulting from RUNX1 
perturbation, we constructed a vector field and visualized the data UMAP space (Figs. 4b 

and 5b). We leveraged Palantir pseudotime trajectory analysis to infer the baseline flow of 

cells between states (Extended Data Fig. 9a,b). To identify cell states enriched and depleted 

after RUNX1 pertubation, we took the inner product between control and experimental 

vector fields. This analysis indicated that RUNX1 perturbation in myeloid cells resulted in 

movement of cells away from the Mac1 and Mac2 states and toward the Mac5 and monocyte 

states, signifying a predicted block in the differentiation of inflammatory macrophages and 

preservation of cardiac resident macrophages (Fig. 6f–h). RUNX1 perturbation in fibroblasts 

resulted in movement of cells away from the Fib3 and Fib6 states and toward the Fib0, 

Fib2 and Fib7 states, suggesting a shift away from states associated with fibrosis and HF 

(Fig. 6g–i). These findings indicate that RUNX1 expression is reduced during recovery and 

predicts that downregulation of RUNX1 activity in macrophages and fibroblasts signifies 

the potential for recovery and drives shifts in macrophages and fibroblasts away from states 

associated with HF.

To evaluate the biological plausibility of the above predictions, we leveraged published 

in vivo scRNA-seq and single-cell assay for transposase-accessible chromatin using 

sequencing (scATAC-seq) data obtained from a study investigating the potential of BRD4 
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inhibition (JQ1 treatment) to promote recovery in a mouse model of pressure overload 

HF (transverse aortic constriction (TAC))22,31 (Fig. 6j). We re-processed the scRNA-seq 

data and annotated major cell populations, independently clustered the scATAC-seq data 

and performed label transfer to annotate scATAC-seq clusters using the RNA information 

(Fig. 6k). We selected the fibroblasts from the ATAC-seq dataset to explore changes in 

chromatin accessibility around the Runx1 locus with JQ1 treatment. We then performed 

peak-to-gene linkage around the Runx1 locus and identified several regions with increased 

accessibility in TAC relative to sham fibroblasts that decreased with JQ1 treatment and 

subsequently increased after withdrawal of JQ1. Using publicly available BRD4 and 

H3K27ac chromatin immunoprecipitation and sequencing (ChIP-seq) data from mouse left 

ventricle, we validated many of these peaks as active enhancer marks that were binding 

sites for BRD4 (Fig. 6l). Next, we quantified Runx1 expression from the scRNA-seq data 

in macrophages and fibroblasts and found that JQ1 treatment was associated with reduced 

Runx1 expression (Fig. 6m). To compare how JQ1 treatment compares to a simulated Runx1 
deletion, we used CellOracle to perform in silico pertubation of Runx1 in myeloid cells 

and fibroblasts (Extended Data Figs. 9 and 10). With JQ1 treatment, there were fewer 

Il1b+ macrophages (cluster 0) and relatively more Lyve1+ resident macrophages (cluster 

2) (Extended Data Fig. 9c). CellOracle-simulated deletion of Runx1 predicted a transition 

away from Il1b+ macrophages toward dendritic cells (Extended Data Fig. 9d). Within the 

fibroblasts, JQ1 treatment resulted in a shift away from Postn+ fibroblasts (cluster 2) toward 

Apoe+ fibroblasts (cluster 0), which were most enriched in the sham condition (Extended 

Data Fig. 10c). CellOracle-simulated deletion of Runx1 predicted a similar transition away 

from Postn+ fibroblasts toward Apoe+ fibroblasts, albeit to a weaker degree as compared 

to JQ1 treatment (Extended Data Fig. 10d). It is important to recognize that JQ1 inhibits 

bromodomain proteins, such as BRD4, which control several transcription factors implicated 

in fibrosis, including Runx1 (Fig. 6l), Meox1 and others. Thus, JQ1 treatment may have 

a greater effect than Runx1 deletion alone. Finally, to assess the relationship between 

JQ1 treatment and human signatures of recovery, we examined the expression of human 

macrophage and fibroblast genes associated with recovery across the mouse conditions. 

Within macrophages, the human recovery signature was enriched in the JQ1-treated group 

and not in the sham group, indicating that BRD4 inhibition drives the acquisition of the 

recovered state. The transcriptional signature of recovery was evident in both sham and 

JQ1-treated conditions, highlighting that BRD4 inhibition promotes both the acquisition of 

the recovered state and reversion to baseline in cardiac fibroblasts (Fig. 6n).

Discussion

By performing snRNA-seq on donor hearts and samples from patients with HF who 

either recovered or did not recover LV systolic function after LVAD implantation, we 

defined the single-cell landscape of human cardiac recovery. This work elucidated that 

the recovered heart represents a distinct biological entity rather than simply a reversion 

to the normal or non-failing state. We discovered that the transcriptional signature of 

cardiac recovery is uniquely encoded across cell types with dominant contributions from 

cardiac macrophages and fibroblasts. Pro-inflammatory macrophage and fibroblast states 

were found to be negative predictors of recovery. Construction of GRNs predicted that 
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downregulation of RUNX1 transcriptional activity in cardiac macrophages and fibroblasts 

may facilitate cardiac recovery, a possibility supported by machine learning and in silico 

transcriptional factor perturbation techniques and corroborated in a mouse model of cardiac 

recovery mediated by BRD4 inhibition.

For patients suffering from HF, cardiac recovery represents the ideal outcome. Recovery of 

LV systolic function is observed in select individuals after the initiation of anti-remodeling 

medications (beta-adrenergic, angiotensin II and neprilysin inhibitors and aldosterone 

antagonists) and mechanical unloading. The frequency of cardiac recovery declines with 

the severity of HF. Individuals with end-stage HF who are eligible for LVAD implantation 

and heart transplantation display the lowest incidence of recovery (1–2%)3–6. It has been 

postulated that combined mechanical unloading and pharmacologic treatment may serve 

as an approach to increase recovery rates in the growing advanced HF population where 

treatment strategies remain limited by recipient eligibility for heart transplantation and 

donor organ availability34–37. An improved understanding of the mechanistic basis by 

which hemodynamic changes imposed by mechanical unloading translate to molecular and 

structural changes associated with cardiac recovery38,39 is essential for the development 

of new therapeutic strategies to increase the frequency of cardiac recovery. Thus, it is of 

the utmost clinical importance to delineate the cell types and mechanisms that orchestrate 

acquisition and maintenance of cardiac recovery.

The concept that recovery is not merely a reversion to normal is supported by both 

clinical and biological data. Clinical trials investigating outcomes after withdrawal of 

anti-remodeling therapy and mechanical unloading in patients with HF who recovered 

LV systolic function identified a significant rate of recurrent HF and deterioration of 

cardiac function. These data suggest that cardiac recovery represents a state of remission 

and indicate that maintenance of cardiac recovery requires ongoing intervention40,41. The 

possibility that the recovered heart is not normal is also supported by physiological 

and pathological investigations demonstrating abnormal contractile reserve, blunted force 

frequency relationship, and persistent fibrosis4,9,42–46. Consistent with our findings, bulk 

RNA sequencing in a mouse model of cardiac recovery triggered by mechanical unloading 

identified a transcriptional signature that was distinct from both baseline and failing 

conditions. Although some HF genes normalized, most remained persistently dysregulated, 

and new signatures associated with recovery emerged47. By generating a cell-type-specific 

transcriptional map of human cardiac recovery, we similarly observed that the recovered 

human heart retains signatures of HF and, instead, found that recovery was associated 

with the emergence of cell-specific transcriptional states that were not found in healthy or 

diseased conditions.

Intriguingly, we found that strongest transcriptional signatures of cardiac recovery were 

predominately encoded outside the cardiac myocyte compartment, with the greatest 

contribution from cardiac macrophages and fibroblasts. We validated this finding in 

an independent bulk RNA sequencing dataset20. Notably, previous studies explored the 

physiological changes that impact cardiomyocyte remodeling in mechanical unloading 

and cardiac recovery and found that cardiomyocytes undergo selective remodeling48; 

however, there is an incomplete reversal of myocyte contractile function despite signs 
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of physiological recovery49. Within the myeloid compartment, we detected distinct 

contributions from monocyte-derived and cardiac resident macrophages, populations with 

opposing functions and effects on HF pathogenesis25,50,51. Patients who did not recover 

displayed an enrichment in monocyte-derived macrophages expressing genes implicated 

in myocardial inflammation and HF (PLAUR, IL1B, TNF and CCL4)13. The presence of 

this population was a negative predictor of recovery. These findings are consistent with 

previous work identifying an association between the abundant pro-inflammatory monocyte-

derived macrophages that expressed CCR2 and failure to recover50. In contrast, we observed 

that CD163+ cardiac resident macrophages are lost in HF and revert to normal levels in 

those who recover. Given that cardiac resident macrophages strongly express transcriptional 

signatures associated with cardiac recovery and are known to possess functions important 

for tissue healing and remodeling27,52,53, it is likely that this population is a central mediator 

of the recovery process.

Cardiac fibroblast activation is an important mechanism of myocardial fibrosis and HF 

pathogenesis32,54. The exact role of fibroblasts in cardiac recovery continues to be 

debated. Within the recovered heart, cardiac fibroblasts retained signatures of fibroblast 

activation, including the expression of FAP, MEOX1 and POSTN13,14,22,32. Interestingly, 

cardiac recovery was associated with reduced expression of genes associated with 

inflammatory and TGF-β signaling in cardiac fibroblasts and markers of immune-cell-driven 

fibroblast activation22,55. When viewed together with the observation that pro-inflammatory 

macrophages persist in patients who do not recover, these findings suggest that resolution of 

inflammatory signaling between macrophages and fibroblasts may be essential for recovery. 

These findings are consistent with the paradigm that para-inflammation leads to persistent 

tissue dysfunction, whereas resolution of inflammation restores tissue function56.

Previous studies expanded on the role of the cardiac microenvironment and cellular 

crosstalk in modulating cardiac recovery57. To unravel transcriptional networks along the 

macrophage–fibroblast axis driving recovery, we performed transcription factor enrichment 

and constructed GRNs associated with recovery. This analysis identified downregulation of 

RUNX1 activity as a key feature of recovery. RUNX1 is a transcription factor with important 

roles in inflammatory responses and hematological cancers58,59. Studies performed in 

zebrafish suggest a role in fibroblast activation60,61. To explore a relationship between 

RUNX1 in macrophages and fibroblasts in cardiac recovery, we applied a deep learning 

approach62,63 and found that RUNX1 target gene expression measured at the time of 

LVAD implantation predicts acquisition of recovered versus non-recovered states in both cell 

populations. We then used CellOracle21 to build macrophage-specific and fibroblast-specific 

GRNs and ascertained the predicted effects of RUNX1 deletion using in silico transcription 

factor perturbation. Within macrophages, RUNX1 perturbation resulted in predicted loss of 

pro-inflammatory macrophages and pathogenic fibroblasts with shifts toward states observed 

in recovered hearts. We then tested our predictions in a clinically relevant mouse model 

of cardiac recovery mediated by JQ1 treatment, an inhibitor of BRD4 (ref. 22). Using 

publicly available multi-omic data, we showed that BRD4 binds to the Runx1 enhancer 

in mouse hearts31, suggesting that inhibition of BRD4 may disturb the Runx1 GRN. We 

identified enhancer peaks in fibroblasts linked to the Runx1 gene that display increased 

accessibility in HF that are diminished by JQ1 treatment, similarly to what was observed 
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at the Meox1 locus22. Consistent with disruption of RUNX1 activity, JQ1 treatment led 

to reduced Runx1 expression in macrophages and fibroblasts. Finally, we show that JQ1 

treatment was sufficient to trigger the emergence of the human cardiac recovery signature 

in macrophages and fibroblasts. Collectively, these findings highlight the possibility that 

RUNX1 inhibition may serve as an approach to facilitate cardiac recovery.

Our study is not without limitations. Availability of paired (preand post-LVAD implant) 

myocardial tissue specimens from patients who recover is extremely scarce given the low 

incidence of cardiac recovery and the small number of clinical centers with robust pipelines 

to phenotype and capture this unique patient population. Given the small cohort of patients 

who recovered, it is difficult to extend our conclusions to the global population of patients 

with HF with differing etiologies, comorbidities and demographics. Furthermore, our study 

employs an snRNA-seq approach that differs from previous studies that rely on bulk RNA 

sequencing. Compared to these studies, a strength of our work is the ability to dissect 

cellular heterogeneity and cell-specific changes that are often masked in bulk profiles 

where the greatest differences are dominated by the most abundant cell type. Unraveling 

cell-state-specific changes driving recovery is important to develop targeted therapeutics 

and establish targeted hypotheses for future studies. A limitation of snRNA-seq is the 

detection of fewer total transcripts. To mitigate concerns of low transcript numbers, we use 

pseudobulk DE techniques to increase our power at detecting rarer genes and ensure that 

differences are consistent across multiple patients. All samples sequenced in this study were 

obtained from the anterior and apical LV walls, and our findings cannot be generalized 

to other regions of the heart, as the myocardium is not a homogenous structure. It is 

important to note that the in silico approach used to perturb Runx1 within macrophages and 

fibroblasts does not consider cellular crosstalk. Although an important limitation, CellOracle 

transcription factor perturbation studies have been validated in vitro and in vivo and used 

by other groups21,33,64. We recognize that there is no perfect mouse model to recapitulate 

cardiac recovery47, and the pressure overload JQ1-mediated recovery dataset has inherent 

limitations. This dataset is used to test the human-derived hypothesis in conjunction with the 

human recovery data to offset this issue. Lastly, although we show that in silico perturbation 

of Runx1 is predicted to facilitate the recovery phenotype, we recognize that conditional 

deletion of Runx1 in macrophages and fibroblasts models is necessary to establish causality.

In conclusion, we provide a comprehensive single-cell transcriptomic map of human cardiac 

recovery, establish that cardiac recovery is a biological state distinct from healthy and 

disease and unravel cell-type-specific signatures of recovery. Furthermore, we identify 

shifts in macrophage and fibroblast phenotypes driven by a RUNX1 GRN that predict the 

propensity for recovery. Finally, we provide orthogonal sources of evidence to suggest that 

disruption of RUNX1 in macrophages and fibroblasts may drive the recovered phenotype 

and that RUNX1 inhibition could be an effective approach to facilitate cardiac recovery.

Methods

Ethical approval for human specimens

This study complies with all ethical regulations associated with human tissue research. 

Acquisition of donor samples was approved by the Washington University institutional 
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review board (study no. 201104172). All samples were procured with informed consent 

from patients obtained by Washington University in St. Louis School of Medicine. No 

compensation was provided for participation. Donor and patient demographical details can 

be found in Supplementary Table 1. Cardiac phenotyping was performed at the time of 

LVAD implantation and explant, and relevant cardiac function metrics are provided in 

Supplementary Table 2. Clinical baseline data were collected for all patients at the time of 

LVAD implantation and are provided in Supplementary Table 3.

Sample selection clinical phenotyping

The recovery cohort of patients was selected to match for the following variables to the 

best extent: ejection fraction at the time of LVAD implant, sex, age and clinical risk profile. 

Age-matched and sex-matched donors were then pulled from the Washington University in 

St. Louis School of Medicine biobank repository. Within the LVAD cohort, patients were 

assigned as ‘reverse remodeled’ or ‘unloaded’. Donors were selected to age and sex match 

with the LVAD samples. RR and U samples were chosen such that ejection fraction at the 

time of LVAD implantation was not different between the two groups.

Human single-nuclei isolation and library preparation snRNA-seq

Cardiac tissues from LVAD cores at the time of LVAD implant (U/RR-pre) and adjacent 

to core samples at the time of explant (U/RR-post) from paired patients were flash-frozen 

using liquid nitrogen. Identical regions from the apex of LV from explanted donors were 

used. Single-nuclei suspensions were generated as previously described. In brief, flash-

frozen sections were minced with a razor blade and transferred to a Dounce homogenizer 

containing 1 ml of lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2 

and 0.1% NP-40 in nuclease-free water) on ice. Samples were homogenized using five 

strokes; an additional 1 ml of lysis buffer was added; and samples were incubated on ice 

for 15 minutes. Samples were then filtered with a 40-μm filter, and the filter was rinsed 

with 1 ml of lysis buffer. The mixture was then centrifuged at 500g for 5 minutes at 4 

°C, resuspended in 1 ml of nuclei wash buffer (2% BSA and 0.2 U μl−1 RNase inhibitor 

(Thermo Fisher Scientific, AM2694) in 1× PBS) and filtered using a 20-μm pluriStrainer 

(pluriSelect, SKU43–50020-03). Filtered solution was centrifuged using the above criteria 

and resuspended in 300 μl of nuclei wash buffer and transferred into a 5-ml tube for 

flow cytometry. Subsequently, 1 μl of DRAQ5 (5 mM solution; Thermo Fisher Scientific, 

62251) was added, and the sample was gently vortexed and allowed to incubate for 5 

minutes before sorting. DRAQ5+ nuclei were sorted into 300 μl of nuclei wash buffer 

using a BD FACSMelody (BD Biosciences) with a 100 μM nozzle. Sorted nuclei were 

then centrifuged using the above conditions and resuspended in nuclei wash buffer for 

a final target concentration of 1,000 nuclei per micro-liter—nuclei were counted on a 

hemocytometer. Based on the nuclei concentration, 10,000 target nuclei were loaded onto 

a Chip G for GEM generation using the Chromium Single Cell 5′ Reagent version 1.1 kit 

from 10x Genomics. Reverse transcription, barcoding, complementary DNA amplification 

and purification for library preparation were performed as per the Chromium 5′ version 1.1 

protocol at the McDonnell Genome Institute. Sequencing was performed on a NovaSeq 6000 

platform (Illumina) at a target read depth of 100,000 at the McDonnell Genome Institute.
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Global transcriptomic map generation

Nuclei FASTQ files were aligned to the whole-genome pre-mRNA reference generated from 

the GRCh38 transcriptome (with the intron flag included) using Cell Ranger version 3 

(10x Genomics). Nuclei were filtered to include those with 1,000 < RNA unique molecular 

identifier (UMI) count < 10,000 and mitochondrial reads less than 5%. After initial QC, 

scrublet was run on each sample separately in Python with default parameters to score 

nuclei, and nuclei with a doublet score greater than 0.2 were excluded from downstream 

analysis. We then leveraged supervised doublet removal as previously described on a 

per-cell-type basis before combining all objects. In brief, clusters were annotated into 

major cell populations; each major cell type was subsetted and re-normalized; and PCA, 

UMAP embedding, clustering and DE analysis were performed. Subclusters that did not 

express the gene signature of the cell type or had overlapping genes across different cell 

types were removed. After contamination, all cell type objects were merged to construct 

a cleaned object. After QC and doublet removal, downstream analysis was performed in 

Seurat version 4 (ref. 65). The cleaned object was normalized using SCTransform66 with 

regressing out mitochondrial percent and RNA UMI counts. We then computed the principal 

components and used these to integrate all samples with Harmony67. Informed by the elbow 

plot, we used 80 components to construct the UMAP embedding, found nearest neighbors 

and clustered the data at multiple resolutions. We then used the FindAllMarkers function 

in Seurat to perform DE testing and annotated clusters into distinct cell types based on 

canonical gene markers. To define cell states within each major cell type, we subsetted 

the major cell populations; re-normalized, re-clustered and re-computed the UMAP; and 

annotated cell states. Both the global object and each cell type object were saved and used 

for downstream analysis and plotting in Seurat. All differential gene expression to identify 

cell types or cell states was performed using the normalized assay with the FindAllMarkers 

function and the Wilcoxon rank-sum test with min.pct = 0.1 and logfc.threshold = 0.25. A 

heat map of the top ten genes was made across cell types/ states. To further substantiate our 

annotations, we used the top genes in each cell type/state to create a gene set z-score to see 

separation across clusters.

Pseudobulk differential gene expression

Pseudobulk differential gene expression was performed using the DESeq2 (ref. 68) package. 

After QC, cells were subsetted for each cell type; raw counts were extracted; raw 

counts were aggregated to the sample level; data were normalized using a regularized 

log-transform; a pseudobulk PCA was performed; and DE analysis between conditions of 

interest via DESeq2 was performed. For pseudobulk DE analysis, we made the following 

comparisons: (1) pre-LVAD HF (U-pre and RR-pre) versus donor; (2) RR-post versus donor; 

and (3) RR-post versus pre-LVAD HF (U-pre and RR-pre). Genes were deemed statistically 

significant if adjusted P < 0.05 and absolute (log2 fold change) > 0.58. Statistically 

significant differentially expressed genes from comparisons (1)–(3) were then used to 

compute cardiac recovery, persistent HF and HF reversed genes within R as defined by 

the Venn diagrams. Additionally, we constructed UpSet plots to look at gene overlap across 

different cell type permutations.
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Continuum analysis with ejection fraction

To connect transcriptional changes with patient ejection fraction within the LVAD cohort, 

we performed a simple linear regression of ejection fraction versus (1) pseudobulk 

expression of genes of interest in specific cell types, such as CD163 and RUNX1, and 

(2) cell-type-specific pseudobulk gene set score of recovery upregulated and downregulated 

genes. Pseudobulk aggregation was done at the sample level as defined above. Regressions 

were performed in Prism 9 (GraphPad Software); R2 was computed for goodness of fit; and 

P value indicates whether the slope is non-zero (F-test).

Cell composition and density shift calculations

We used R to compute cell type composition across conditions. To assess shifts in cell 

density within both the global object and within individual cell types, we converted the .rds 

object to an .h5ad file format and used the scanpy.tl.embedding function, which employs a 

Gaussian kernel density estimation of cell number within the UMAP embedding. Density 

values are scaled from 0 to 1 within that category.

RNAscope in situ hybridization

Flash-frozen LV samples were fixed for 24 hours at 4 °C in 10% neutral buffered formalin, 

washed in 1× PBS and embedded in paraffin. Paraffin-embedded sections were cut at 

an 8-μm thickness using a microtome. RNA in situ hybridization was performed using 

the RNAScope69 Multiplex Fluorescent Reagent Kit version 2 assay and RNAScope 2.5 

HD Detection Reagent as per the protocol—RED and RNAScope 2.5 HD Duplex Assay 

Kits (Advanced Cell Diagnostics) using probes designed by Advanced Cell Diagnostics. 

Fluorescent images were collected using a Zeiss LSM 700 laser scanning confocal 

microscope. The following RNAScope probes from Advanced Cell Diagnostics were 

used: MYH6 (555381), NPPA (531281), CD163 (417061), POSTN (409181), PLAUR 

and RUNX1. Chromogenic/bright-field/fluorescent images were acquired using a Zeiss 

Axioscan Z1 automated slide scanner. Image processing was performed using Zen Blue 

and Zen Black (Zeiss). Positive cells were counted using either of two approaches: (1) 

for fluorescent images, the number of positive cells counted per ×10 field; or (2) for 

chromogenic images, the number of positive interstitial cells / total number of interstitial 

nuclei per ×10 field. For CD163 and POSTN, donor and DCM samples were used from 

our previously published study and re-quantified as per the above approach to ensure 

comparability.

Pseudotime analysis

Palantir70 was used to perform pseudotime analysis. To dissect monocyte fate specification 

in HF and cardiac recovery, we subsetted the myeloid object to include U-pre, U-post, 

RR-pre and RR-post and excluded the proliferating cells. The normalized count matrix was 

then exported as a .txt file and loaded into Python. Palantir was then used to compute a 

PCA and a diffusion map using a multiscale low-dimensional embedding computer with 5 

eigenvectors. An FDL was then computed for visualization of trajectories, and MAGIC was 

used to impute data for visualization. The Palantir simulation was executed with classical 

monocytes as the starting state, no terminal states specified and 600 waypoints used. 
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Generalized additive models within Palantir were then used to compute gene expression 

trends along the Mac2 lineage using the plot_gene_trend_heatmaps function. Pseudotime, 

entropy and FDL embedding values were exported, and subsequent plotting for visualization 

was performed in R/Seurat.

Pathway analysis and transcription factor enrichment

Statistically significant differentially expressed cardiac recovery genes as defined above 

from the pseudobulk section were used to perform pathway enrichment analysis. EnrichR 

(https://maayanlab.cloud/Enrichr/) was used for pathway analysis. Transcription factor 

enrichment analysis was performed using DoRothEA or the ENCODE and ChEA consensus 

transcription factors from ChIP-X in EnrichR. Pathway and transcription factor enrichment 

values were downloaded as .csv files, and plots were generated in Prism. GO enrichment 

analysis to compare cell states was done in R using the clusterProlifer71 compareClusters 

function using only statistically significant marker genes.

Deep learning to predict recovery

In the macrophages and fibroblasts, we exported the counts matrix for the pre-

LVAD HF group (U-pre/RR-pre). The counts matrix was filtered to include only 

RUNX1 target genes. The target genes were obtained from low-throughput and high-

throughput functional studies (https://maayanlab.cloud/Harmonizome/gene_set/RUNX1/

CHEA+Transcription+Factor+Targets). Next, we used the sklearn.model_selection function 

to split our data into a train set and a test set (with test.size = 0.3). We then used 

the StandardScaler function from the sklearn library to scale the train and test feature 

matrices. We used Keras (https://github.com/keras-team/keras) from TensorFlow (https://

www.tensorflow.org/about/bib) with a dropout l2 regularization to train a deep neural 

network to classify nuclei into RR or U category. The following network structure was 

used in Python3, and all code has been uploaded to our GitHub:

model = keras.Sequential([

keras.layers.Flatten(input_shape=(len(df.columns) - 1,)),

keras.layers.Dense(16, activation=tf.nn.relu,

kernel_regularizer=regularizers.l2(0.001)),

layers.Dropout(0.5),

keras.layers.Dense(16, activation=tf.nn.relu,

kernel_regularizer=regularizers.l2(0.001)),

layers.Dropout(0.5),

keras.layers.Dense(1, activation=tf.nn.sigmoid),])
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The model was compiled using an ‘Adam’ optimizer and a binary cross-entropy 

loss function. AUC metrics were calculated. To provide an alternative comparison, 

we also trained an RF classifier using the RandomForestClassifier function from the 

sklearn.ensemble library (https://scikit-learn.org/stable/about.html#citing-scikit-learn). Both 

models were applied on the test dataset, and receiver operating characteristic (ROC) curves 

were plotted to compare the two approaches. Deep learning was repeated several times, 

and the accuracy metrics were consistent across simulation runs; in each run, a different 

permutation of train/test was used.

GRN construction

CellOracle (version 0.10.5)21 was used to perform GRN analysis in macrophages and 

fibroblasts separately. Processed data were imported into scanpy as .h5ad files. The dataset 

was then downsampled to 20,000 nuclei to limit computational memory usage. Highly 

variable genes (3,000) were kept for GRN construction. A promoter DNA sequences base 

GRN was initialized for humans. Unscaled counts were used to generate the CellOracle 

object, and k-nearest neighbor (KNN) imputation was performed. A cluster-specific GRN 

was then constructed, and the processed GRN was saved for subsequent transcription factor 

knockout (KO) analysis (Supplementary Tables 16, 17, 20 and 22).

In silico transcription factor perturbation

For in silico RUNX1 KO simulation in macrophages and fibroblasts, the processed Oracle 

object and inferred GRNs were loaded. The GRN was then fit using ridge regression 

models for the simulation. To simulate a KO, the RUNX1 expression was set to 0. 

Next, we calculated cell state transition probabilities, which are visualized as vectors 

on a digitized grid. To establish a baseline developmental flow field, we used Palantir 

as described above to calculate pseudotime values (Supplementary Tables 19 and 21). 

Next, the Gradient_calculator function from the CellOracle library was used to calculate 

a developmental vector field on the digitized grid. As described in CellOracle, an inner 

product was calculated between the baseline vector field and the post-KO simulation vector 

field to assess perturbations in different cell states, to understand which populations are 

enriched and depleted after RUNX1 KO. All visualization parameters were used as per 

CellOracle recommendations.

External in vivo dataset analysis

scRNA-seq analysis. We used publicly available data with annotations from the original 

manuscript. Specifically, we extracted the fibroblasts (POSTN+ and POSTN−) and myeloid 

cells. Using the human pseudobulk cardiac recovery genes, we calculated a gene signature 

for these genes in the mouse dataset and compared sham, TAC, TAC + JQ1 and TAC + JQ1 

withdrawn. For the purposes of reference mapping, we extracted the raw filtered matrices for 

all samples, processed the data using the same pipeline that we applied for the human data 

and built a single-cell map that we annotated using canonical gene markers. This object was 

then used to annotate the ATAC-seq data.

scATAC-seq analysis. Raw fragment files were used to construct arrow files in ArchR72. 

In brief, we used ArchR to calculate doublet scores; we filtered doublets; and we 
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only kept cells with a transcription state site (TSS) enrichment score > 10 and 

number of unique fragments > 10,000. Next, we computed an iterative latent semantic 

indexing (LSI), integrated data with Harmony across samples, added clusters and 

computed a UMAP embedding. To annotate cells from the ATAC-seq data, we used 

the addGeneIntegrationMatrix function with the above processed and annotated scRNA-

seq reference. Using these cluster annotations, we made pseudobulk replicates with the 

addGroupCoverages function. Then, we used the addReproduciblePeakSet function and 

MACS2 to call peaks. We then subsetted the fibroblasts, used ArchR to compute peak-to-

gene links and used browser plots to visualize peak-to-gene links around the Runx1 locus. 

We split the browser track by condition to assess chromatin accessibility with peaks linked 

to the Runx1 gene. Within this same locus, we also leveraged publicly available BRD4 and 

H3K27ac ChIP-seq data22—.bed files were downloaded, and tracts were plotted using IGV 

(version 2.13.1).

Statistics and reproducibility

Statistical significance was calculated in Prism 9. For RNAscope image quantification, five 

fields were quantified per patient in areas of maximal staining, and representative images 

from those areas are shown in Figs. 3–6 and Extended Data Figs. 6–8. Hematoxylin and 

eosin staining was performed on adjacent areas (for which tissue was available) used for 

snRNA-seq, and representative images are shown in Suplementary Fig. 2. For snRNA-seq 

analysis, data integration with Harmony was performed to minimize batch effects across 

libraries.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1 |. Quality control metrics.
nCount_RNA, nFeature_RNA, percent.mt, and scrublet doublet score split by (A) condition 

and (B) cell type.
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Extended Data

Extended Data Fig. 2 |. Global clustering.
(A) Heatmap of top10 marker gens for each cell type identified via DE analysis. (B) DotPlot 

for cell type gene set scores from (A) where the x-axis is cell type gene signature and y-axis 

is the cluster. (C) Gene set z-scores for top gene markers for each cell type plotted in the 

UMAP embedding. (D) Cell type composition for each of the patient samples.
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Extended Data

Extended Data Fig. 3 |. Pseudobulk DE analysis to unravel cardiac recovery.
(A) Pseudobulk DE analysis in each cell type in 3 comparison groups: pre-LVAD HF vs 

donor, RR-post vs donor, and RR-post vs pre-LVAD HF. Red dots indicate statistically 

significant genes (adjusted p-value < 0.05). (B) Total number of statistically significant 

(adjusted p-value < 0.05 and log2FC > 0.58) per cell type in comparisons from (A). (C) 

Number of overlapping genes in five major cell populations which are up and down in 

the comparisons from (A). Red number is the number of cardiac recovery genes. P-values 

calculated using Wald test adjusted for multiple corrections.
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Extended Data

Extended Data Fig. 4 |. Cardiac recovery overlap amongst cell types.
UpSet plot showing overlap in cardiac recovery genes from (Fig. 2) in five major cell 

populations which are (A) up and (B) down in cardiac recovery.
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Extended Data

Extended Data Fig. 5 |. Cell-specific pseudobulk analysis.
Pseudobulk PCA analysis in each cell type colored by five conditions (donor, U-pre, U-post, 

RR-pre, and RR-post).
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Extended Data

Extended Data Fig. 6 |. ABRA expression enriched in unloaded group.
(A) DotPlot of cardiomyocyte specific recovery up- and down signature grouped by CM cell 

states. (B) Density plot of ABRA expression in UMAP embedding. (C) DotPlot of ABRA 

expression in cardiomyocytes grouped by condition. (D) RNAscope images of ABRA in 5 

conditions and scale bar is 100 um. (E) RNAscope images quantified across an array of 

patients. N = 37 biologically independent samples and p-values calculated using Wald test 

adjusted for multiple corrections; donor vs U-pre (*P = 0.023), U-pre vs RR-pre (***P < 

0.0001), U-pre vs RR-post (***P = 0.0003), U-post vs RR-pre (***P = 0.0007), U-post vs 

RR-post (*P = 0.0188), and RR-pre vs RR-post (***P = 0.0007).
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Extended Data

Extended Data Fig. 7 |. Macrophage diversity in recovery.
(A) Gene set z-scores for top gene markers for each cell state plotted in the UMAP 

embedding. (B) Enrich GO using compareclusters from cluster Prolifer across macrophage 

cell states. P-value calculated using Fisher exact test. (C) WikiPathways enriched in cardiac 

recovery. P-value calculated using Fisher exact test. (D) Paired comparison of Mac 2 cluster 

composition at patient level split by U and RR group from biologically independent samples. 

(E) DoRothEA TF enrichment analysis in U-post and RR-post zoomed in on some key 

differentially enriched TFs. (F) Overlap between Runx1 target genes and DE genes between 

U-pre and RR-pre with heatmap of respective genes split by condition.

Amrute et al. Page 26

Nat Cardiovasc Res. Author manuscript; available in PMC 2023 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Fig. 8 |. Fibroblast diversity in recovery.
(A) Gene set z-scores for top gene markers for each cell state plotted in the UMAP 

embedding. (B) DotPlot for cell type gene set scores from (A) where the x-axis is cell 

type gene signature and y-axis is the cluster. (C) Enrich GO using compareclusters from 

cluster profiler across fibroblast cell states. P-value calculated using Fisher exact test.
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Extended Data

Extended Data Fig. 9 |. CellOracle simulation in myeloid cells in TAC.
(A) Myeloid cell states, (B) Marker genes for cell states, (C) Cell state composition and cell 

density plots in TAC and TAC + JQ1, and (D) Cell oracle Runx1 KO perturbation score with 

vector field.
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Extended Data

Extended Data Fig. 10 |. CellOracle simulation in fibroblasts in TAC.
(A) Fibroblast cell states, (B) Marker genes for cell states, (C) Cell state composition and 

cell density plots in TAC and TAC + JQ1, and (D) Cell oracle Runx1 KO perturbation score 

with vector field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Study design, global clustering and DE analysis of cardiac remodeling after LVAD 
implantation.
a, Study design. b, Integrated UMAP embedding plot of snRNA-seq data across n = 40 

samples and 185,881 nuclei. c, Violin plot for canonical marker genes for cell types. d, 

Cell cluster composition across conditions colored by cell type. e, Paired ejection fraction 

measured before and after LVAD implantation split by RR (left) and U (right) with n = 5 

and 8 biologically independent samples. Paired two-tailed t-test where *P = 0.0134 (RR) 

and non-significant P = 0.1169 (U). f, Pseudobulk differential gene expression comparisons 

in cardiac remodeling after LVAD implantation categories. g, Number of statistically 

significant differentially expressed genes (adjusted P < 0.05 and log2 fold change > 0.58 

from DEseq2) from f in each cell type as pairwise comparisons where size of dot refers to 

the sum of axis, and the color refers to the cell type. P values were calculated using the 

Wald test adjusted for multiple corrections. EF, ejection fraction; NK, natural killer; NS, 

non-significant.
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Fig. 2 |. Cell-type specific cardiac recovery.
a, Schematic of gene set from DE analysis that marks cardiac recovery. b, Number of 

statistically significant (adjusted P < 0.05 and log2 fold change > 0.58 from DESeq2) 

genes from pseudobulk DE analysis that are upregulated and downregulated in cardiac 

recovery across cell types. P values were calculated using the Wald test adjusted for multiple 

corrections. c, Pseudobulk heat maps of top genes upregulated (top) and downregulated 

(bottom) in cardiac recovery in major cell populations split by donor, HF pre-LVAD, reverse 

remodeled and unloaded. d, Overlapping genes between recovery predicted genes from 

bulk RNA sequencing in RR-pre and U-pre20 and pseudobulk cell-specific recovery genes. 

e, Number of unique and overlapping cardiac recovery genes in major cell populations. 

f, Pseudobulk expression of cardiac recovery genes that overlap among the major cell 

populations. g, Polygenic recovery score of upregulated and downregulated genes in cardiac 

recovery versus patient ejection fracrtion as a simple linear regression. Dotted line indicates 

95% confidence interval; R2 indicates goodness of fit; and P value indicates whether the 

slope is significantly non-zero using an F-test. P values were calculated using two-tailed 
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linear regression Wald test with t-distribution. EF, ejection fraction; NK, natural killer; SMC, 

smooth muscle cell.
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Fig. 3 |. Cardiomyocytes do not revert to a healthy state in cardiac recovery.
a, Cardiomyocyte pseudobulk PCA representation of each patient sample colored by 

condition. b, UMAP embedding plot of cardiomyocytes. c, Heat map of marker genes for 

distinct cardiomyocyte cell states. d, Dot plot of gene set z-scores for the top ten genes in 

each cardiomyocyte cell state. e, Enriched GO pathways for cardiomyocyte cell states using 

statistically significant marker genes identified using a Wilcoxon rank-sum test (adjusted 

P < 0.05 and log2 fold change > 0.58). Dot size refers to gene ratio, and color of dots 

refers to the adjusted P value. P value was calculated using the Fisher exact test. f, Gaussian 

kernel density estimation of number of nuclei split by condition. g, Pseudobulk heat map 

of canonical genes up and down in HF split by condition. h, Fluorescence RNAscope in 

situ hybridization for MYH6 and NPPA in donor, pre-LVAD unloaded, pre-LVAD reverse 

remodeled, post-LVAD unloaded and post-LVAD reverse remodeled. Images are at ×10 

magnification. i, Quantification of number cells per ×10 field for MYH6 and NPPA across 

the five conditions. P values were calculated using the Brown–Forsythe and Welch ANOVA 

tests comparing each condition to donor. For MYH6, n = 38 biologically independent 

samples and Brown–Forsythe ANOVA test F = 28.91, DFn = 4 and P < 0.0001; U-pre (***P 
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= 0.001), U-post (**P = 0.0011), RR-pre (***P = 0.0004) and RR-post (**P = 0.0019) 

relative to donor. For NPPA, n = 38 biologically independent samples and Brown–Forsythe 

ANOVA test F = 6.040, DFn = 4 and P = 0.004; U-pre (***P = 0.0001), U-post (**P 
= 0.0033), RR-pre (non-significant P = 0.086) and RR-post (non-significant P = 0.1017) 

relative to donor. Error bars are mean ± s.e.m. j, Density plots of MYH6 and NPPA 

expression in UMAP embedding. k, Upregulated pseudobulk recovery signature ridge plot 

split across five conditions. l, Transcription factor protein–protein interactions for genes 

upregulated in recovery. m, Downregulated pseudobulk recovery signature ridge plot split 

across five conditions. n, Transcription factor protein–protein interactions for CM2 marker 

genes downregulated in cardiac recovery. PC, principal component.
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Fig. 4 |. Pro-inflammatory macrophages and RUNX1 are diminished in reverse remodeling, 
whereas tissue resident macrophages show signs of recovery.
a, Myeloid pseudobulk PCA representation of each patient sample colored by condition. 

b, UMAP of myeloid cell states (left) and cell state composition across conditions (right). 

c, Heat map of marker genes for distinct myeloid cell states. d, Recovery upregulated 

signature in four conditions. e, Ridge plot of CD163 expression split by five conditions. 

f, RNAscope in situ hybridization of representative ×10 fields across conditions (left) and 

quantification of number of CD163+ cells per ×10 field (right) (n = 26). Donor versus 

pre-LVAD HF (***P = 0.0002), donor versus RR-post (non-significant P = 0.1251), donor 

versus U-post (**P = 0.0034), pre-LVAD HF versus RR-post (***P = 0.0001), pre-LVAD 

HF versus U-post (*P = 0.0256) and RR-post versus U-post (*P = 0.0108). g, Linear 

regression of CD163 pseudobulk expression and patient ejection fraction in pre and post 

cohorts. h, Nuclei density in unloaded pre-LVAD and reverse remodeled pre-LVAD. i, Mac2 

composition in donors and pre-LVAD patients (n = 27). Donor versus U-pre (**P = 0.0067), 

U-pre versus RR-pre (**P = 0.0027) and donor versus RR-pre (non-significant P > 0.145). 

j, Inflammation score in U-pre and RR-pre (left) and quantified (right) (n = 27). U-pre 

versus RR-pre (*P = 0.0321), donor versus U-pre (non-significant P = 0.1006) and donor 
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versus RR-pre (non-significant P = 0.1602). k, FDL plot of myeloid cell states with colors 

from b. l, Palantir pseudotime in FDL space with terminal states (Mac1, cDC2 and Mono2) 

(top) and nuclei split by four conditions (bottom). m, CHKA, PLAUR and RUNX1 gene 

expression along pseudotime (left) (shaded area indicating 1 s.d.) in FDL space (right). n, 

Pseudobulk RUNX1 expression in pre-LVAD HF, U-post and RR-post (n = 40), pre-LVAD 

HF versus U-post (non-significant P = 0.1177), donor versus RR-post and pre-LVAD HF 

versus RR-post (****P < 0.0001) and U-post versus RR-post (**P = 0.0058). o, Linear 

regression of RUNX1 pseudobulk expression and patient ejection fraction in pre and post 

cohorts. Dotted line indicates 95% confidence interval; R2 indicates goodness of fit; and P 
value indicates whether the slope is significantly non-zero using an F-test. P values were 

calculated using two-tailed linear regression Wald test with t-distribution in g and o. Error 

bars are mean ± s.e.m. in f, i and j. P values were calculated using unpaired t-test with 

Welch’s correction from biologically independent samples in f, i, j and n. EF, ejection 

fraction; NS, non-significant; PC, principal component.
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Fig. 5 |. RUNX1 is downregulated in fibroblasts in cardiac recovery.
a, Fibroblast pseudobulk sample PCA colored by condition. b, UMAP of fibroblast cell 

states. c, Heat map of marker genes for distinct fibroblast cell states. d, Cell composition of 

fibroblast cell states across five conditions (left) and nuclei density in four conditions (right). 

e, Pseudobulk expression heat map of canonical genes upregulated and downregulated in 

fibroblasts in HF across five conditions. Upregulated (f) and downregulated (h) pseudobulk 

recovery signature ridge plot split across five conditions. GO biological processes pathways 

enriched in recovery (g) and pathways down in recovery (i). j, Heat map of pseudobulk DE 

analysis between RR-pre and U-pre split across five conditions. k, Volcano plot of pathways 

enriched in unloaded group pre-LVAD implantation where each point is a gene set pathway, 

and the color of the points represents the degree of statistical significance. l, Transcription 

factors down in cardiac recovery from ENCODE/ ChEA consensus; x axis is transcription 
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factors, and red dots are transcription factors that are statistically significant. Heat map 

showing expression of RUNX1 target genes across five conditions. m, PRO-seq coverage 

in unstimulated and TGF-β-treated in vitro fibroblasts (GSE15582) at the RUNX1 locus. 

n, Density plots of HF genes in UMAP embedding (left) and linear regression of RUNX1 

pseudobulk expression and patient ejection fraction in pre and post cohorts (right). o. 

RNAscope in situ hybridization of representative ×10 fields from a donor, pre-LVAD HF, U-

post and RR-post sample (left); n = 23 biologically independent samples and quantification 

of number of POSTN+ cells per ×10 field across the four conditions (right). P values were 

calculated using unpaired t-test with Welch’s correction. Donor versus pre-LVAD HF (**P = 

0.0051). Error bars are mean ± s.e.m. p, Linear regression of RUNX1 pseudobulk expression 

in fibroblasts and inflammatory signature in macrophages in post-LVAD cohort. Dotted 

line indicates 95% confidence interval; R2 indicates goodness of fit; and P value indicates 

whether the slope is significantly non-zero using an F-test. P values were calculated using 

two-tailed linear regression Wald test with t-distribution in n and p. P values were calculated 

with Fisher exact test in g, i, k and l. BP, biological process; EF, ejection fraction; PC, 

principal component; TF, transcription factor.
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Fig. 6 |. RUNX1 perturbation in silico and in vivo facilitates cardiac recovery.
a, RUNX1 RNAscope in situ hybridization across conditions. b, Quantification of a as 

proportion of positive interstitial nuclei/total interstitial nuclei per ×10 field. n = 37 

biologically independent samples and unpaired t-test with Welch’s correction. *P = 0.0188, 

**P = 0.007 and ***P < 0.001. Error bars are mean ± s.e.m. c, Schematic of machine 

learning approach used to predict recovery in macrophages and fibroblasts with Runx1 target 

genes as features. ROC curves with accuracy metrics for test dataset in predicting recovery 

in macrophages (d) and fibroblasts (e) using a Keras deep neural net classifier model and 

an RF classifier. CellOracle in silico Runx1 KO simulation quiver plot of vector field in 

macrophages (f) and fibroblasts (g). Perturbation score with vector field in macrophages 

(h) and fibroblasts (i). j, Study design of external validation dataset. k, scRNA-seq and 

scATAC-seq UMAP embedding with cell labels from RNA sequencing label transferred onto 
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ATAC-seq dataset using publicly available data (GSE15582). l, Mouse Runx1 locus showing 

from top to bottom: ChIP-seq for BRD4 (GSE46668) and H3K27ac (ENCSR000CDF) in 

adult mouse heart and scATAC-seq in mouse fibroblasts split by four conditions with called 

peaks (GSE15582) and peak2gene links from ArchR. Numbers above tract indicate ranges 

of normalized tag densities. Highlighted area is a Runx1 intronic peak. m, Runx1 expression 

in macrophages (left) and Postn− fibroblasts (right) in sham, TAC, TAC + JQ1 and TAC 

+ JQ1 withdrawn. Each dot represents a single cell. P values were adjusted with ordinary 

one-way ANOVA and Turkey’s multiple comparisons test. Myeloid: sham versus TAC + 

JQ1 withdrawm (*P = 0.0492), TAC versus TAC + JQ1 (***P = 0.0003) and TAC + JQ1 

versus TAC + JQ1 withdrawn (**P = 0.0021). Fibroblast: ****P < 0.0001 for all pairwise 

comparisons. n, Dot plot of human myeloid and fibroblast recovery signature plotted in 

mouse macrophages in fibroblasts split by four conditions. NK, natural killer; SMC, smooth 

muscle cell.
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