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SUMMARY
Measuring cell identity in development, disease, and reprogramming is challenging as cell types and states
are in continual transition. Here, we present Capybara, a computational tool to classify discrete cell identity
and intermediate ‘‘hybrid’’ cell states, supporting a metric to quantify cell fate transition dynamics. We vali-
date hybrid cells using experimental lineage tracing data to demonstrate the multi-lineage potential of these
intermediate cell states. We apply Capybara to diagnose shortcomings in several cell engineering protocols,
identifying hybrid states in cardiac reprogramming and off-target identities in motor neuron programming,
which we alleviate by adding exogenous signaling factors. Further, we establish a putative in vivo correlate
for induced endoderm progenitors. Together, these results showcase the utility of Capybara to dissect cell
identity and fate transitions, prioritizing interventions to enhance the efficiency and fidelity of stem cell engi-
neering.
INTRODUCTION

The accurate quantification of cell identity in the context of stem

cell differentiation and reprogramming is crucial to assess and

refine cell engineering protocols. Previous methods to assess

cell identity using bulk classifiers revealed that directed differen-

tiation of cells from a pluripotent state produces developmentally

immature cell types (Cahan et al., 2014). Similarly, direct reprog-

ramming between differentiated states, typically driven by tran-

scription factor (TF) overexpression, yields partially converted

cells and off-target identities (Morris et al., 2014). However, pre-

cisely characterizing these cell engineering protocols is chal-

lenging due to their heterogeneity and the continual transition

of cell types and states in dynamic biological systems.

Several computational strategies aim to automate the

annotation of cell identity from single-cell data (Abdelaal et al.,

2019). For example, Garnett leverages both single-cell RNA-

sequencing (scRNA-seq) and single-cell ATAC-sequencing

(scATAC-seq) data to classify cell identity (Pliner et al., 2019);

ScPred uses scRNA-seq alone to build a predictionmodel based

on a training dataset, estimating the probability of each cell

belonging to a cell type category (Alquicira-Hernandez et al.,

2019); SingleCellNet is an approach that quantitatively assesses
identity using a Random Forest classifier to learn cell type-spe-

cific gene pairs from cross-platform and cross-species datasets

(Tan and Cahan, 2019). However, many of these current super-

vised methods require prior biological knowledge to accurately

classify cell identity. Furthermore, these approaches deliver

discrete cell-type annotation, overlooking hybrid states which

represent poorly characterized entities that occupy a space be-

tween discrete, fully defined cell identities (MacLean et al., 2018).

Hybrid cells, also referred to as intermediate cells, have previ-

ously been described in the context of epithelial to mesenchymal

transitions (Hong et al., 2015), differentiation of CD4+ T cells

(Hong et al., 2012), hematopoiesis (Olsson et al., 2016), and ze-

brafish development (Farrell et al., 2018). Such mixed identity

states can shed light on key transitions or bistable intermediates,

yet hybrid cells are challenging to systematically define and

capture.

Here, we present Capybara, an unsupervised computational

method to quantitatively assess cell identity as a continuous

property. In contrast to current approaches to annotate cell iden-

tity, we designed Capybara to interrogate the gradual transition

of cell identity. To achieve this, we measure the identity scores

for each query cell against exhaustive public cell type references

using quadratic programming (QP), a method previously used to
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Figure 1. Capybara workflow and proof of concept simulation study

(A) Four steps of the Capybara workflow. (1) Tissue-level classification using bulk expression data to restrict the number of reference cell types in the downstream

analysis. (2) Using single-cell atlases, we further identify highly correlated tissues to construct a high-resolution reference. Quadratic programming (QP) provides

a continuous measure of cell identity as a linear combination of all cell types within the reference. (3) Initial classification using QP quality metrics to categorize the

sample cells into discrete, hybrid, or unknown identities. (4) Detailed cell type classification to map cells to their corresponding cell types using a statistical

framework.

(B) Simulation study design. Differentiation is simulated from the progenitor state (P1) to two discrete states (E1 and P2). P2 further differentiates into two end

states (E2, E3). Red nodes, test cells; black nodes, cells included in the reference.

(C) Pseudotime presentation of the simulated single-cell dataset, with discrete identities and transition state circled.

(legend continued on next page)
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evaluate the reconfiguration of cell identity during direct lineage

reprogramming (Biddy et al., 2018; Treutlein et al., 2016). Unlike

existing methods, Capybara uses continuous identity scores to

allow multiple identities to be assigned to an individual cell,

enabling hybrid cell type identification. We build on this unique

feature to develop a ‘‘transition metric,’’ allowing quantification

of cell fate transition dynamics.

We benchmark Capybara against a range of existing cell type

classifiers, demonstrating its accuracy to annotate cell identity.

We validate hybrid cells using experimental lineage tracing of he-

matopoiesis, in addition to RNA FISH and immunostaining of a

hybrid arising during cardiac reprogramming. We also demon-

strate the utility of Capybara to diagnose and correct shortcom-

ings in a range of reprogramming methods. Applied to the

programming of motor neurons from embryonic stem cells

(ESCs) and reprogramming cardiac fibroblasts to cardiomyo-

cytes, our analysis reveals off-target cell identities arising from

deficient patterning; additional signaling factors refine motor

neuron programming to increase target cell yield more than

4-fold. Finally, analysis of direct reprogramming from fibroblasts

to induced endoderm progenitors (iEPs) identifies an in vivo

correlate for this relatively uncharacterized reprogrammed cell

type, which we validate experimentally. Together, these results

showcase the utility of Capybara to dissect cell fate transitions

in differentiation and reprogramming, prioritizing strategies to

enhance the fidelity of cell engineering. Capybara code and

documentation are available via https://github.com/morris-lab/

Capybara.

RESULTS

Capybara overview, benchmarking, and validation
To classify cell identity, Capybara assumes that each single-cell

transcriptome exists as a combination of fractional identities

from an array of candidate cell types. Under this assumption,

quadratic programming (QP) has previously been used to

leverage bulk expression signatures as a reference to classify

single cells as a linear combination of different cell types (Biddy

et al., 2018; Treutlein et al., 2016). We previously adapted this

approach to construct scRNA-seq references of cell identity,

supporting high-resolution cell-type classification in intestinal

reprogramming (Seiler et al., 2019). Here, we generalize this

method via systematic reference construction, using both bulk

and annotated single-cell atlas datasets, enabling the unsuper-

vised classification of cell identity in four steps, as follows (Fig-

ure 1A; STAR Methods).

First, initial tissue-level classification identifies the most

appropriate tissue-specific single-cell reference to use. This

step restricts the number of reference cell types included in

downstream analysis, reducing excessive noise and depen-

dencies caused by correlation across tissues. This custom sin-

gle-cell reference is assembled in the second step by subsetting

a larger atlas, such as the Mouse Cell Atlas (MCA) (Han et al.,

2018). We overcome gene expression dropout by sampling cells
(D) Expected classification outcomes.

(E) Heatmap of percentage agreement between Capybara classifications and sim

states are mapped to corresponding discrete identities; unknown cell types are

See also Figure S1.
from each defined cell type to create a ‘‘pseudo-bulk’’ reference.

Application of QP using this custom reference generates contin-

uous measurements of cell identity as a linear combination of all

cell types within the reference. In the third step, we place the as-

sessed cells into one of three identity categories—(1) discrete, (2)

hybrid, and (3) unknown—using QP quality metrics (Figure S1A;

STAR Methods). Finally, we apply a statistical framework to

assign a discrete identity to each cell. This step also character-

izes the multiple identities harbored by a single cell, representing

putative ‘‘hybrid’’ cells. This function distinguishes Capybara

from other cell-type classifiers, where cells in transition states

are classified as either unknown or are placed within a discrete

identity class. This aspect of our workflow enables us to explore

the establishment and maintenance of cell identity in complex,

continuous biological systems.

We validate the efficacy of Capybara to accurately classify

discrete cell identity, using themulticlass area under the receiver

operating characteristic (AUROC), together with a recent bench-

mark algorithm (Abdelaal et al., 2019) and our in-house validation

with the TabulaMuris (TabulaMuris Consortium et al., 2018) (Fig-

ure S1B; STAR Methods). When benchmarked against ten other

classifiers using five human pancreatic datasets and the Allen

Mouse Brain Atlas, Capybara demonstrates a similar and nearly

perfect AUROC performance (average = 0.95; rank 5 out of 11;

Figure S1C). Further, Capybara classifies the majority of cells

as ‘‘unknown’’ when an inappropriate reference is used, sug-

gesting improper choice or insufficient cell-type coverage of

the reference (Figure S1D).

As a further performance validation, we simulate a single-cell

dataset comprising distinct differentiation paths to assess

whether Capybara can (1) capture cells with discrete identities,

(2) identify cells that do not correlate with any cell types in the

reference, and (3) characterize hybrid cells that are in transition

between discrete identities. We use Splatter, a simulation frame-

work based on Gamma-Poisson distribution (STAR Methods;

Zappia et al., 2017), to simulate distinct differentiation paths

from an unknown progenitor state not included in the reference

(P1), bifurcating toward two discrete states (E1, end state #1;

P2, progenitor state #2). P2 progenitor cells bifurcate further to-

ward end states #2 and #3 (E2 and E3, respectively; Figures 1B

and 1C), where end state 3 is not included in the reference.

Indeed, Capybara accurately classifies cells in the three different

identity categories, distinguishing between known discrete iden-

tities and cells in transition between them (AUROC = 1;

Figures 1B–1E). Further, Capybara can distinguish unknown

cell types with 100% accuracy and separate unknown progeni-

tor states versus unknown terminal states, using QP quality met-

rics (Figures 1D and 1E; STAR Methods). We benchmark our

hybrid cell classification against scMap to illustrate how existing

cell type classifiers cannot resolve mixed identity cells (Fig-

ure S1E). Furthermore, we show that low-complexity references

donot generate artifactual hybrid cell classifications (Figure S1F).

Together, our benchmarking and simulation demonstrate the ef-

ficacy of our method for cell-type classification of discrete and
ulation ground truth. The transition state receives a hybrid classification; end

not assigned an identity.
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hybrid cell identities. We next showcase the application of Capy-

bara in a well-characterized continuous differentiation process:

hematopoiesis.

Capybara accurately captures cell identity and fate
transitions in hematopoiesis
Hematopoiesis represents a cell differentiation process encom-

passing continuous changes in cell identity to multiple, well-

defined terminal states (Orkin and Zon, 2008). We apply

Capybara analysis to a published single-cell atlas of early

myeloid progenitor differentiation to further test the performance

of our method (Paul et al., 2015). Initial tissue-level classification

shows a high correspondence of the single-cell data to the bone

marrow (Figure 2A: step 1). From this initial classification, we use

the Mouse Cell Atlas (MCA) (Han et al., 2018) to generate a high-

resolution reference. Continuous identity scoring with this refer-

ence returns two major cell populations: bone marrow and

peripheral blood (Figure 2A: step 2), consisting of 82.2%discrete

cell types, 17.8% hybrid cells, and no unclassified cells (Fig-

ure 2A: step 3; Data S1 and S2). DoubletFinder (McGinnis

et al., 2019) and DoubletDecon (DePasquale et al., 2019) anal-

ysis labels 7%–9% of the hybrid cell population as cell doublets,

relative to 4.3%–16.9% of the discrete population, ruling out

doublets as the source of hybrid signals (Data S2).

Overall, Capybara cell-type classification identifies the ex-

pected myeloid progenitor populations, including erythrocytes,

megakaryocytes, hematopoietic stem and progenitor cells

(HSPCs), monocytes, and neutrophils (Figure 2A: step 4). 13 ma-

jor cell populations, resolved using partition-based graph

abstraction (PAGA) (Wolf et al., 2019) and annotated according

to Paul et al. (2015), agree with Capybara classification

(Weighted Cohen’s Kappa = 0.95; Figures 2B and 2C). Further,

each classified population exhibits significant enrichment of

established cell-type marker expression (Cd34, Itga2b, Cebpε,

Csf1r, and Car2; p < 2.2E�16, Wilcoxon rank-sum test, Fig-

ure S2A). In addition, we assess the position of each discrete

cell type within pseudotime estimated by PAGA, using modified

diffusion pseudotime (Wolf et al., 2019); Capybara-classified

HSPCs coincidewith early pseudotime, as expected for this rela-

tively undifferentiated cell population (Figures 2D and 2E).

In addition to discrete cell types, we identify five major hybrid

populations, each representing R0.5% of the overall population:

erythroblast-erythrocyte progenitors, megakaryocyte progeni-

tor-erythrocyte progenitors, monocyte progenitor-neutrophils,

megakaryocyte progenitor-eosinophil progenitors, andmonocyte

progenitor-eosinophil progenitors (Figure 2A: step 4). The largest

hybrid population constitutes a mixed identity between erythro-

cyte progenitors and more differentiated erythroblasts, suggest-

ing the hybrids represent a transition state. We leveraged PAGA

to evaluate these hybrid cells, assuming hybrids would likely

occupy intermediate pseudotime between defined identities.

Indeed, erythroblast-erythrocyte progenitor hybrids are located

mid-pseudotime, between discrete progenitor and erythroblast

states (Figures 2F and 2G). We observe this trend for all hybrid

populations identified (Figure S2B). Further, clusters enriched for

hybrid cells are connected, based on PAGA analysis (Figure S2C).

Altogether, the application of Capybara to this well-characterized

paradigmofcell differentiationaccurately identifiesmajor hemato-

poietic cell populations, in addition to hybrid cell populations.
4 Cell Stem Cell 29, 1–15, April 7, 2022
Lineage tracing reveals the multi-lineage potential of
hybrid-classified cells
To further characterize hybrid cells, we leverage single-cell line-

age tracing of hematopoiesis (Weinreb et al., 2020). In this prior

study, Lin� Sca1+ Kit+ (LSK) HSPCs were isolated and labeled

with random heritable barcodes, delivered via lentivirus. The

barcoded cells were differentiated in vitro and collected for

scRNA-seq at days 2, 4, and 6, yielding 72,946 single-cell tran-

scriptomes. Cells sharing identical barcodes are identified as

clonal relatives; thus, early cell state can be directly linked to dif-

ferentiation outcome, allowing hybrid cell potential to be tested

(Figure 3A). For these analyses, we constructed a reference

from a small subset (1.7%) of the major day 6 differentiated

myeloid populations. These cells used to construct the reference

did not go through the classification again (Figures S3A and S3B;

Data S1 and S3). We identify seven major hybrid cell types (Fig-

ure 3B). The three largest hybrid populations (monocyte-neutro-

phil, basophil-mast, and basophil-eosinophil hybrids), contain

clones spanning early and late time points. We assessed the

cell-type composition of clonal relatives for each hybrid cell pop-

ulation across all time points, revealing significant enrichment of

the discrete cell types that constitute each hybrid identity

(*p < 0.05; randomization test; Figure 3C).

We next focused on two of the main hybrid populations span-

ning days 4 and 6 of differentiation: monocyte-neutrophil and

basophil-mast hybrids. We identified clones on day 4 that are

composed exclusively of discrete cell identities (i.e., monocytes,

neutrophils, basophils, or mast cells only) and found that their

day 6 siblings are significantly restricted to their day 4 lineage

(p < 0.05, randomization test; Figure 3D). In contrast, day 4

clones containing hybrids generate day 6 populations that are

significantly enriched for the discrete cell types that comprise

their mixed identity. For example, clones harboring monocyte-

neutrophil hybrids on day 4 generate day 6 populations that

are significantly enriched for discrete monocytes, neutrophils,

and monocyte-neutrophil hybrids (*p < 0.05; randomization

test; Figures 3D, left, and 3E). Indeed, these monocyte-neutro-

phil hybrids are transcriptionally similar to a bistable intermediate

cell state reported to yield both monocytes and neutrophils

(Olsson et al., 2016; Figures S3C–S3E). Further, day 4 clones

harboring basophil-mast hybrid cells generate significant

discrete basophil and mast cell populations on day 6 (Figure 3D,

right). In summary, experimental lineage tracing data support the

ability of Capybara to capture hybrid cells and that these states

are biologically relevant.

A metric to quantify cell fate transition dynamics
Together with previous work, the evidence we present suggests

that hybrid cells represent intermediate states (MacLean et al.,

2018)—either cells in transition between discrete identities or

metastable mixed-lineage-state progenitors. Our unbiased

quantification of hybrid cells supports the development of a

‘‘transition metric,’’ where for each discrete cell identity within

a population, we measure the strength and frequency of its

connection to hybrid states (Figure 3F; STAR Methods). A high

transition score represents a high information state where iden-

tities converge—a putative cell fate transition.

We first compare transition scores to PAGA-based cell-to-cell

connectivity scores. Analyzing myeloid progenitor differentiation
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Figure 2. Capybara classification of hematopoietic cell identity

(A) Cell-type classification of an existing myeloid progenitor dataset (n = 2,730 cells; Paul et al., 2015). Prog, progenitor; HSPC, hematopoietic stem and

progenitor cell. Other includes basophils, eosinophil progenitors, B cell progenitors, macrophages, dendritic cells, and NK cells.

(B) PAGA embedding. FA, Force Atlas. (i) Manual annotation of clusters, based on Paul et al. (2015). DC, dendritic cell; MEP, megakaryocyte and erythroid

progenitor; Ery, erythroid; Lymph, lymphoid; HPC, hematopoietic progenitor cell. (i–i) Capybara annotations.

(C) Heatmap comparing manual and Capybara classifications. Color denotes the percentage agreement.

(D) Diffusion pseudotime analysis projected onto the PAGA embedding.

(E) Pseudotime for each Capybara-classified cell type.

(F) Projection of erythrocyte progenitor-erythroblast hybrids, along with discrete erythrocyte progenitors and erythroblasts onto the erythroid lineage.

(G) Comparison of pseudotime between the hybrid and discrete identities shown in (F).

See also Figure S2.
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Figure 3. Evaluation of hybrid cells using ground-truth lineage tracing

(A) Weinreb et al. (2020) hematopoietic lineage-tracing dataset. Hematopoietic progenitor cells were isolated, barcoded at day 0, and collected for scRNA-seq at

day 2. Under myeloid differentiation conditions, cells were collected at days 4 and 6 for scRNA-seq.

(B) Major hybrid populations identified by Capybara.

(C) Cell-type composition of cells clonally related to major hybrid cell types. Upper row: Cell-type distribution of the overall population. Lower rows: Average cell-

type breakdown for all clonal relatives of each major hybrid cell population (*p % 0.05, n.s.: p > 0.05, randomization test; 24 ± 4 cells per clone, 10 clones,

243 cells).

(legend continued on next page)
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(Paul et al., 2015) shows a strong correlation between the total

connectivity and transition score (Pearson’s, r = 0.84; Fig-

ure S2D). Further, we apply RNA Velocity (La Manno et al.,

2018) to identify actively transitioning cell states in cardiomyo-

cyte reprogramming (Stone et al., 2019), observing a strong cor-

relation between transition scores and RNA velocity vectors

(Pearson’s, r = 0.77; Figure S3F). Finally, we calculate transition

scores for datasets spanning the earliest stages of differentiation

to terminally differentiated cardiomyocytes (Klein et al., 2015; Pi-

juan-Sala et al., 2019; Stone et al., 2019). As development pro-

gresses and cells specialize, transition scores progressively

and significantly decrease, as expected (Figure 3G). ESCs under

maintenance conditions demonstrate low transition scores as

they are not actively differentiating. Altogether, our validation of

Capybara demonstrates that, in an unbiased manner, we can

accurately classify cell identity, hybrid states, and fate transi-

tions. We next apply Capybara to characterize less defined,

non-physiological systems, such as cell reprogramming, to diag-

nose aberrant fate specification and inform protocol refinement

strategies.
Characterizing off-target and hybrid cell identity in
cardiac lineage reprogramming
We first apply Capybara to assess the direct conversion of fibro-

blasts to cardiomyocyte-like cells via overexpression of three

TFs: Gata4, Mef2c, and Tbx5 (GMT) (Ieda et al., 2010; Qian

et al., 2012; Song et al., 2012). We selected a 30,729-cell,

2-week time course of cardiac fibroblast to induced cardiomyo-

cyte reprogramming, driven by GMT in the presence of TGF-b

and Wnt inhibitors. On day 14, cells expressing the cardiac re-

porter gene a-Myosin Heavy Chain were sorted (Gulick et al.,

1991) and profiled via scRNA-seq (Stone et al., 2019) (Figure 4A).

Initial tissue-level classification, followed by refinement using

the MCA, produces a high-resolution reference containing

neonatal heart and skin populations (Figure S4A). Two major

populations labeled from neonatal skin include macrophages

and muscle cells, both mesodermal and resident in the heart

(de Soysa et al., 2019). 65.1% of cells in the time course are as-

signed discrete identities, and 19.7% are assigned hybrid iden-

tities (Figure 4B). By reprogramming day 14 (2,320 cells), the

majority of discretely classified cells are atrial cardiomyocytes

(76%), and ventricular cardiomyocytes (7.7%) (Figures 4B, and

4C; Data S4), confirmed via assessment of region-specific

markers (Figure S4B). Non-cardiac cells, such as cardiac fibro-

blasts, blood, and muscle previously identified by Stone et al.

(2019), decrease over time (Figure 4B). Hybrid cells in the day

14 sorted population are dominated by an atrial-ventricular

(AV) cardiomyocyte intermediate (55.9%; Figures 4B and S4D).

Brown adipose also features in discrete and hybrid identities
(D) State-fate analysis.We identified clones composed of discrete or hybrid identit

relatives at day 6. Top rows: day 6 clonal relatives derived from day 4 lineage-re

containing hybrid cells (*p % 0.05; randomization test).

(E) SPRING projection of cells related to monocyte- and neutrophil-restricted clo

(F) Capybara’s transitionmetric. Squares, discrete cells; circles, hybrid cells. Pi;j , p

cell type as the accumulated information received from each cell connection.

(G) Transition scores of mouse gastrulation, embryonic stem cells (ESCs), an

Wilcoxon test).

See also Figure S3.
(Figures 4B, S4C, and S4D), which we speculate could be

derived from cardiac-resident adipogenic progenitors that func-

tion in cardiac repair (Chen et al., 2021; Liu et al., 2010; Yamada

et al., 2006). Transition scores significantly increase in the first

2 days of reprogramming, followed by a progressive decrease

(p < 0.0001, Wilcoxon rank-sum test; Figure 4D), implying an

initial period of active fate transitioning, followed by a steady

fate commitment. This observation echoes previous findings,

where the final reprogramming outcome is determined within

the first 48 h (Stone et al., 2019).

To gain a more accurate picture of off-target cell types, we

generated cardiomyocytes according to the Stone protocol,

without a-Myosin Heavy Chain sorting at day 14, yielding 5,107

cells from two independent biological replicates. Integration

with the Stone et al. (2019) data demonstrates successful reca-

pitulation of the protocol (cosine similarity: 0.71–0.89; Fig-

ure S4E). Cell-type classification reveals a similar off-target cell

identity profile to the Stone protocol and enrichment of atrial car-

diomyocytes (Figure 4E).We confirm the presence of AV hybrids,

although at a much lower frequency (<1%; Data S1) relative to

the Stone protocol, which we attribute to not sorting the cells.

To validate AV hybrids, we performed RNA fluorescence in situ

hybridization (FISH) using probes against canonical markers,

Myh6 (atrial myosin heavy chain), and Myh7 (ventricular myosin

heavy chain) on day 14 reprogrammed cells. We identified hybrid

cells co-expressing both markers (Figures 4F, S4F, and S4G).

We selected an additional canonical atrial marker, Myl4, along

with ventricular markers identified from the scRNA-seq data,

Actc1 and Tnnc1 (Figure S4H), and identified further AV hybrids

via RNA FISH (Figure 4G). We note that hybrid cells are typically

binucleated or possess irregular nuclear morphology. Finally, we

performed immunostaining for canonical markers MYL7 (atrial)

and MYL2 (ventricular), validating atrial-ventricular hybrid cells

at the protein level, in similar proportions to hybrid cells identified

by scRNA-seq and FISH (Figures 4H and S4G–S4J). Together,

Capybara can capture critical regionalization dynamics and

off-target cell identities, indicating that additional TFs or

signal modulation is required to tailor cardiac reprogramming

outcomes.
Capybara reveals a dorsal-ventral patterning deficiency
in motor neuron programming
Next, we focus on generating spinal motor neurons (MNs) from

mouse ESCs. In TF-mediated direct programming (DP), overex-

pression of Ngn2, Isl1, and Lhx3 (NIL) direct ESCs to spinal MNs,

bypassing canonical progenitor states (Mazzoni et al., 2013; Ve-

lasco et al., 2017). Alternatively, MNs can be produced by

‘‘directed differentiation’’ (DD), involving sequential treatment

with fibroblast growth factors (FGFs), retinoic acid (RA), and
ies at day 4 and assessed the cell-type composition of their differentiated clonal

stricted clones. Bottom row: day 6 clonal relatives derived from day 4 clones

nes and hybrid clones.

robability of cell i transitioning to cell j. We calculate the transition score of each

d cardiomyocytes (****p % 0.0001, ***p % 0.001, **p % 0.01, *p % 0.05,
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Figure 4. Capybara analysis of direct cardiac reprogramming

(A) Stone et al. (2019) experimental design. GMT: Gata4, Mef2c, and Tbx5.

(B) Discrete, hybrid, and unknown cell composition. Top: Capybara classified cell type composition over the time course. Dot size is proportional to the discrete

population size. Bottom: Hybrid cell identities of the day 14 reprogrammed cells.

(C) UMAP plot of the cardiac reprogramming dataset. Top: Collection time points projected onto the UMAP embedding. Bottom: Projection of atrial and ven-

tricular cardiomyocytes, and atrial-ventricular hybrids.

(D) Transition scores across the cardiac reprogramming process (****p % 0.0001, Wilcoxon test).

(legend continued on next page)
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Sonic hedgehog (SHH) (Wichterle et al., 2002; Wu et al., 2012),

designed to recapitulate spinal cord development (Sagner and

Briscoe, 2019). These two approaches have been compared

via scRNA-seq profiling, confirming the generation of cells

resembling MNs (Briggs et al., 2017) (Figure 5A). Here, we pri-

marily focus on the TF-mediated DP protocol, which was re-

ported to generate MNs with higher efficiency (Briggs et al.,

2017). To classify cell identity, we use a recent single-cell atlas

of mouse embryonic spinal cord, encompassing 118 cell types

and states, including non-neuronal cell types surrounding the

developing spinal cord (Delile et al., 2019) (Figure 5B). This

high-resolution reference, combinedwith theMCAESCs, is ideal

for our analysis of MN generation, allowing initial tissue-level

classification to be bypassed (Figure S5A).

Capybara assigns discrete identities to 87.8% of cells (n =

4,136/4,704 cells). 12.2% of cells classify as hybrids, and no

cells are unclassified (Figure 5C; Data S5). Neuronal identity

gradually emerges from a dominant ESC classification, with

63.8% of cells classifying as neurons on day 11. However,

only 3% of this population classifies as MNs, whereas most

cells classify across a range of dorsal-ventral neuronal identi-

ties (Figures 5C and S5B). In contrast, MN production in DD

peaks at 13.4% of the early-stage (day 5) population, declining

to 3.4% of the overall population (Figures 5C and S5B). Transi-

tion scores significantly decrease as TF-mediated program-

ming progresses (p < 2.2E�16; Wilcoxon test; Figure S5C)

with hybrid cell generation peaking at day 4 (Figures S5D and

S5E). Very few hybrid states represent known developmental

progressions, particularly in DP compared to DD, suggesting

that the mixed identities we observe in this context arise due

to aberrant cell fate specification. Together, these observations

raise the possibility that dorsal-ventral patterning is incomplete,

suggesting that additional patterning signals could enhance

MN production.

Retinoic acid treatment resolves off-target identities to
enhance MN generation
Spinal cord regionalization integrates complex spatial and tem-

poral patterning events (Delile et al., 2019), involving different

signaling molecules, such as RA and SHH (Lara-Ramı́rez et al.,

2013; Ribes et al., 2009). Hypothesizing that these signals might

fine-tune dorsal-ventral patterning to increase MN yield in vitro,

we directly programmed ESCs using the originally published

protocol (Mazzoni et al., 2013) in the presence and absence of

1 mM all-trans RA and/or 0.5 mM smoothened agonist (SAG, a

hedgehog pathway activator) (Figure 5D; STAR Methods). Four

days following embryoid body (EB) formation and reprogram-

ming induction, we captured a total of 17,136 cells from two

independent biological replicates (cosine similarity = 0.988;

Figures S5F and S5G). 7.5% ± 1.6% of cells classify as MNs

with TF induction alone, representing amore than 3-fold increase

on the Briggs protocol, whichwe speculate is due to the initial EB
(E) Detailed cell type and hybrid classification of our unsorted day 14 induced

cardiomyocyte; BAT, brown adipose tissue; SM, smooth muscle; Endo, endothe

(F) RNA FISH for Myh6 (atrial) and Myh7 (ventricular) co-expression in a hybrid c

(G) RNA FISH for Myl4 (atrial) and Actc1, Tnnc1 (ventricular) showing discrete an

(H) Hybrid cell percentages measured by RNA FISH, immunofluorescence, and s

See also Figure S4.
formation in our protocol. In agreement with the Briggs protocol,

we yield 13.7% ± 1.7% dorsal and 10.3% ± 1.2% ventral neu-

rons. 35% of cells are hybrids (Figure S5H).

We next assessed whether adding RA and/or SAG can in-

crease MN yields by reducing off-target cell generation. Indeed,

RA treatment significantly increases MN generation more than

4-fold, from 7.5% ± 1.6% to 33.4% ± 4.9% (p < 2.2E�16,

randomization test), and significantly depletes the off-target dor-

sal population, mainly dl3, from 13.7% ± 2.0% to 5.8% ± 0.9%

(p < 2.2E�16, randomization test) (Figures 5D and 5E). The off-

target ventral (mainly V2a) population is also significantly

depleted, from 10.7% ± 1.2% to 6.1% ± 0.5%, upon addition

of RA (p < 2.2E�16, randomization test). The addition of SAG

alone only slightly enhances MN generation and offers no addi-

tional yields when added in combination with RA. Next focusing

on the hybrid populations, the ESC-MN population is signifi-

cantly enriched upon the addition of RA (p < 2.2E�16, random-

ization test), whereas the ESC-dl3 population is significantly

depleted (p < 2.2E�16, randomization test; Figure 5F). Further-

more, upon addition of RA, the number of cells co-expressing

the MN marker, Mnx1, and dorsal neuron marker, Pou4f1, is

reduced more than 6-fold to 1.8% ± 0.7%, in line with the 1%

of co-expressing cells observed in vivo (Figures 5G and 5H; De-

lile et al., 2019). SAG treatmentmore than halves the co-express-

ing population to 4.8% but offers no further reductions when

added with RA. Together, these results demonstrate the efficacy

of Capybara to diagnose aberrant dorsal-ventral patterning in

MN programming, which can be alleviated by the addition of

RA to enhance the efficiency and fidelity of MN generation

in vitro.

An in vivo correlate for fibroblast to induced endoderm
progenitor reprogramming
Finally, we investigate a direct reprogramming process that pro-

duces a relatively uncharacterized cell identity with no presently

known in vivo correlate. The overexpression of TFs Foxa1 and

Hnf4a in mouse embryonic fibroblasts (MEFs) was initially de-

signed to yield hepatocyte-like cells (Sekiya and Suzuki, 2011).

However, our previous bulk cell type classification and functional

studies revealed that these cells also harbor intestinal potential,

in addition to hepatic potential, leading to their designation as

‘‘induced endoderm progenitors’’ (iEPs) (Guo et al., 2019; Morris

et al., 2014). However, an in vivo correlate for these cells has re-

mained elusive.

To better characterize iEP identity, we apply Capybara to our

previous 85,010 cell reprogramming time course (Figure 6A)

(Biddy et al., 2018). Initial tissue-level classification followed by

refinement using the MCA produces a high-resolution reference,

mainly consisting of embryonic mesenchyme and several endo-

derm populations (Figure S6A). Epithelial cells steadily emerge

over the time course , with few cells classifying as hepatocytes,

agreeing with our previous study (Figure 6B; Data S6; Morris
cardiomyocytes (n = 5,107 cells, two independent biological replicates). CM,

lium.

ell.

d hybrid cells. Scale bars = 10 mm.

cRNA-seq.
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Figure 5. Capybara analysis of spinal motor neuron differentiation and programming

(A) Directed differentiation versus direct programming of motor neurons (MNs) from ESCs (Briggs et al., 2017).

(B) Spinal cord domains and regions included in the reference atlas (Delile et al., 2019).

(C) Cell type composition over the differentiation and programming time courses. Dot size is proportional to the discrete population size.

(D) Top: Experimental design in this study. After 48 h of embryoid body (EB) formation, we induced the original reprogramming cocktail (Ngn2, Isl1, Lhx3: NIL) with

retinoic acid (RA) and/or smoothened agonist (SAG). Day 4 cells were collected for scRNA-seq (cells profiled: TF only: 2,926; TF + SAG: 3,340; TF + RA: 2,828;

TF + RA +SAG: 8,042; two independent biological replicates per condition). Bottom: Differentiated spinal cord neuron composition and percentage breakdown of

dorsal-ventral populations for each treatment group (*p % 0.05, ****p % 0.0001, randomization test).

(E) UMAP plot of MN and dorsal populations comparing TF-only to TF + RA groups.

(F) Major hybrid populations across treatment groups (****p % 0.0001, *p % 0.05; two sample chi-square test).

(G) Expression of the dorsal marker, Pou4f1, and motor neuron marker, Mnx1, comparing this study to the in vivo study (Delile et al., 2019).

(H) Quantification of co-expressing cells in across treatment groups and in vivo (****p % 0.0001; Two sample chi-square test).

See also Figure S5.
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et al., 2014). Relative to the above differentiation and reprogram-

ming paradigms, a substantial proportion of cells (35.0%) remain

unclassified, suggesting that a key in vivo correlate is missing

from the reference.
10 Cell Stem Cell 29, 1–15, April 7, 2022
Hypothesizing that iEPs represent a developmental progeni-

tor, we assembled an embryonic atlas containing endoderm

and foregut tissues, spanning E3.5 to E9.5 (Han et al., 2020;

Nowotschin et al., 2019). However, iEPs remain largely
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Figure 6. Capybara analysis of fibroblast to induced endoderm progenitor (iEP) reprogramming

(A) MEF to iEP reprogramming (Biddy et al., 2018).

(B) Top: Discrete cell type composition over the time course. Dot size is proportional to the discrete population size. Bottom: Hybrid cell identity proportions of

cells after 28 days of reprogramming.

(C) Cell composition with a developmental atlas (Han et al., 2020; Nowotschin et al., 2019) or a combined regenerative liver atlas (Han et al., 2018; Pepe-Mooney

et al., 2019).

(D) Cell type composition of day 28 and long-term cultured iEPs (n = 20,532 and 6,190 cells).

(legend continued on next page)
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unclassified using this reference (Figures 6C and S6B). Alterna-

tively, we consider that iEPs may represent a regenerative cell

type, based on their functional repair of liver and colon (Guo

et al., 2019; Morris et al., 2014; Sekiya and Suzuki, 2011).

Further, evidence supports a role for the Hippo signaling effector

Yap1 in iEP generation (Kamimoto et al., 2020) in a process

resembling injured liver regeneration (Pepe-Mooney et al.,

2019). Thus, we built a high-resolution reference including ho-

meostatic and regenerative liver epithelium, which contains

twomain regenerative cell types: hepatocytes and biliary epithe-

lial cells (BECs) (Pepe-Mooney et al., 2019). Using this reference,

we classify day 28 reprogrammed iEPs, and long-term cultured

iEPs (LT-iEPs) that successfully engraft acutely damaged intes-

tine (Guo et al., 2019; Morris et al., 2014). 8.3% ± 4.7% of clas-

sified day 28 reprogrammed iEPs (n = 19,734/20,532 cells) and

95.7% ± 3.5 % of LT-iEPs (n = 6,190 cells, two independent bio-

logical replicates) classify as post-injury BECs (Figures 6D, S6B,

and S6C). We next sought to experimentally validate the putative

identity of iEPs as BECs.

iEPs possess characteristics of biliary epithelial cells
in vitro

Under homeostasis, BECs are quiescent and arrange to form

tubular, single-epithelial-layered bile ducts in the liver. Upon

injury, BECs enter active proliferation and play a key role in

regeneration (Kamimoto et al., 2016). BECs isolated from the

injured liver can be cultured ex vivo and maintained long-term

(Okabe et al., 2009). Thus, we cultured LT-iEPs which harbor

the highest proportion of ‘‘injured BECs,’’ in a 3D-gel sandwich

culture that promotes tubule formation in vitro (Ogawa et al.,

2015), mimicking normal in vivo BEC morphology (Jin et al.,

2013; Lewis et al., 2018). We observed branching tubular struc-

tures after 3 days of culture, significantly upregulating estab-

lished BEC markers, cytokeratin 19 (CK19), and epithelial cell

adhesion molecule (EpCAM) by day 5 (Figures 6E and S6D).

Moreover, 2D-cultured LT-iEPs express Ck19 but reduced

Epcam, recapitulating the reported behavior of injured BECs af-

ter expansion in vitro for more than 30 days (Figures 6E and 6H)

(Okabe et al., 2009).

To further characterize 3D-cultured LT-iEPs, we captured day

5 gel-cultured branching iEPs for scRNA-seq (n = 14,047 cells,

two independent biological replicates). Cell-type classification

shows the significant emergence of a normal BEC population

in 3D-cultured iEPs (14.3% ± 1.7% of discretely classified cells;

p < 2.2E�16, randomization test). This population is absent in 2D

culture, which is significantly enriched for post-injury BECs

(p < 2.2E�16, randomization test; Figures 6F and 6G). Addition-

ally, an injured BEC-normal BEC hybrid appears as a unique

population under 3D culture conditions (Figure 6G, right).

Accompanying the emergence of normal BECs in 3D-culture
(E) Imaging of 2D and 3D-cultured iEPs. Left: Bright-field images and DAPI field

CK19, and EpCAM staining. Right: Quantification of the percentage of positively s

two technical replicates each). Scale bars = 100 and 50 mm.

(F) UMAP plot of our integrated 2D and 3D single-cell datasets with classified

4,699 cells).

(G) Discrete and hybrid cell type composition of iEPs in 2D and 3D cultures. (*p%

Epcam (H), Cyr61 (I) (p % 0.0001; two sample chi-square test).

See also Figure S6.
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is a significant expansion of cells expressing Epcam (p <

2.2E�16, randomization test, Figure 6H), in line with the above

immunostaining, in addition to a significant reduction in the per-

centage of cells expressing Cyr61, a marker of injured BECs

(p < 2.2E�16; randomization test, Figure 6I) (Pepe-Mooney

et al., 2019). Moreover, these BEC-like cells express specific

BEC markers, such as Sox9 (Figures S6E and S6F). Together,

the cell type classification and orthogonal validation presented

here reveal the previously uncharacterized BEC-like characteris-

tics of iEPs.

DISCUSSION

Here, we have developed and validated Capybara, an unsuper-

vised method to quantitatively assess cell identity and fate tran-

sitions. A unique feature of Capybara is the measurement of cell

identity as a continuum and its statistical framework to identify

hybrid cells. Lineage tracing of hematopoietic differentiation

demonstrates the multi-lineage potential of cells classified as

monocyte-neutrophil and basophil-mast hybrids. Indeed, the

monocyte-neutrophil hybrids we describe here are transcription-

ally similar to a reported rare bistable hybrid with the functional

potential to generate both monocytic and granulocytic lineages

(Olsson et al., 2016). Further, we speculate that basophil-mast

hybrids may correspond to a previously described rare baso-

phil-mast progenitor cell (BMCP) which exhibits a hybrid tran-

scriptional profile that primes differentiation toward the mast

cell and basophil lineages (Dahlin et al., 2018). Further, we

confirm the existence of atrial-ventricular cardiomyocyte hybrids

in cardiac reprogramming via RNA FISH and immunostaining,

validating the efficacy of Capybara to capture these mixed cell

identities.

Hybrid states have been relatively poorly characterized due

to their scarcity and transient nature. However, with high-

throughput scRNA-seq, more examples of hybrid states are

emerging (MacLean et al., 2018), along with computational

approaches to characterize them. For example, MuTrans uses

multiscale stochastic dynamics to capture transition states

from single-cell data (Zhou et al., 2021). Capybara represents a

unique method to assess mixed cell identities where deeper

profiling of various cell differentiation paradigms may uncover

hybrid states representing novel progenitor cell types and transi-

tions. Hybrid cell states have been proposed to fulfill several

roles in biological processes: they may serve to control bidirec-

tional transitions between cell types, control fluctuations in cell

population size, or create access to new cell identities—which

is a crucial component of lineage reprogramming (MacLean

et al., 2018). Indeed, we report wide-ranging hybrid states in

the reprogramming paradigms we have analyzed here, contrast-

ing with our analysis of hematopoietic hybrids representing
of composite z stack images. Middle: Immunofluorescence images of DAPI,

tained cells. MEFs: negative control (n = two independent biological replicates,

cell types labeled (3D: Two independent biological replicates: n = 9,348 and

0.05, randomization test). Percentage of 2D- and 3D-cultured iEPs expressing
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rational cell state transitions or reported bistable intermediates.

We hypothesize that the high levels of TF overexpression

required to convert cell identity yields non-physiological cell

states. Alternatively, the diversity of hybrid states may be rooted

in the heterogeneity of the starting cell populations. Indeed,

characterizing hybrids in this context might provide insight into

the origins of successfully reprogramming cells.

The benefits of unsupervised cell-type classification go

beyond the characterization of transition states, as we demon-

strate via our analysis of diverse cell engineering strategies.

For example, we defined regional patterning dynamics in the

generation of cardiomyocytes andmotor neurons. In cardiomyo-

cyte reprogramming, atrial cardiomyocytes are generated in

larger numbers than their ventricular counterparts; an atrial-

ventricular hybrid suggests that modification of the protocol

could shift this balance. Indeed, inhibition of TGFb signaling

with Wnt activation yields mainly ventricular cardiomyocytes

(Wang et al., 2014), whereas both TGFb and Wnt inhibition gen-

erates mostly atrial-like cardiomyocytes. Fine-tuning this bal-

ance will be beneficial to increasing yields of atrial or ventricular

cardiomyocytes, which are functionally different populations that

are both valuable drug-screening targets. In the context of motor

neuron programming, we identified a range of off-target dorsal-

ventral spinal neuron identities; the addition of retinoic acid to

correct this patterning deficiency yielded more than 4-fold

more motor neurons. Finally, Capybara’s unsupervised cell-

type classification identified BECs as a potential in vivo correlate

for iEPs, a poorly characterized product of reprogramming.

Together, these observations demonstrate the power of Capy-

bara to enable highly quantitative cell type characterization, sug-

gesting new reprogramming strategies.

Limitations of Capybara
It is crucial to note that the performance of Capybara relies on the

selection of appropriate reference datasets. We have designed

the workflow with this limitation in mind, where initial tissue-level

classification identifies the most appropriate tissue-specific sin-

gle-cell reference to use. Indeed, if an inappropriate reference is

used, Capybara will classify cell identity as ‘‘unknown,’’ as we

demonstrate in our analysis of iEPs, which subsequently led us

to a more suitable reference. A strength of Capybara to note

here is that references can be constructed from a minimum of

30 cells, increasing the likelihood that rare cell types can be

captured from selected references. As more diverse single-cell

datasets become publicly available, we anticipate that this will

support a much broader classification of cell identities.
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Rajewsky, N., Simon, L., and Theis, F.J. (2019). PAGA: graph abstraction rec-

onciles clustering with trajectory inference through a topology preserving map

of single cells. Genome Biol. 20, 59.

Wu, C.-Y., Whye, D., Mason, R.W., and Wang, W. (2012). Efficient differentia-

tion of mouse embryonic stem cells into motor neurons. J. Vis. Exp. e3813.

Yamada, Y., Wang, X.D., Yokoyama, S., Fukuda, N., and Takakura, N. (2006).

Cardiac progenitor cells in brown adipose tissue repaired damaged myocar-

dium. Biochem. Biophys. Res. Commun. 342, 662–670.

Zappia, L., Phipson, B., and Oshlack, A. (2017). Splatter: simulation of single-

cell RNA sequencing data. Genome Biol. 18, 174. https://doi.org/10.1186/

s13059-017-1305-0.

Zhou, P., Wang, S., Li, T., and Nie, Q. (2021). Dissecting transition cells from

single-cell transcriptome data through multiscale stochastic dynamics. Nat.

Commun. 12, 5609.
Cell Stem Cell 29, 1–15, April 7, 2022 15

http://refhub.elsevier.com/S1934-5909(22)00099-6/sref43
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref43
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref44
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref44
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref44
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref44
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref45
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref45
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref46
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref46
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref46
https://doi.org/10.1038/nprot.2013.067
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref48
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref48
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref48
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref49
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref49
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref50
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref50
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref50
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/nmeth.2089
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref52
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref52
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref52
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref52
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref52
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref53
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref53
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref54
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref54
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref54
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref55
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref55
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref55
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref55
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref55
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref57
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref57
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref57
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref57
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref57
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref57
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref58
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref58
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref58
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref59
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref59
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref59
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref59
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref60
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref60
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref60
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref60
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref60
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref61
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref61
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref62
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref62
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref62
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref63
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref63
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref63
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref64
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref64
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref64
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref64
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref65
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref65
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref65
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref66
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref66
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref67
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref67
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref68
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref68
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref68
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref68
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref69
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref69
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref70
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref70
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref70
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1186/s13059-017-1305-0
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref72
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref72
http://refhub.elsevier.com/S1934-5909(22)00099-6/sref72


ll
Resource

Please cite this article in press as: Kong et al., Capybara: A computational tool to measure cell identity and fate transitions, Cell Stem Cell (2022),
https://doi.org/10.1016/j.stem.2022.03.001
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse Monoclonal Anti-MYL7 Antibody (B-10) Santa Cruz Biotechnology RRID:AB_10848272

Rabbit Monoclonal Anti-MYL2 Antibody Abcam RRID:AB_10563535

Rat Monoclonal Anti-Mouse CD326

(EpCAM) Antibody

BD Biosciences RRID:AB_394370

Rabbit Monoclonal Anti-Cytokeratin 19

(CK19) Antibody

Abcam RRID:AB_2281020

CD90.2 (Thy1.2) Monoclonal Antibody, FITC Invitrogen RRID:AB_273503
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Alexa Fluor 488 Goat Anti-mouse IgG Invitrogen RRID:AB_2534088
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Fetal bovine serum (FBS) GIBCO Cat #: 10082147

Fibroblast Medium-2 ScienCell Research Laboratories Cat #: 2331

Matrigel (GFR Membrane Matrix) Corning Cat #: CB-40230

b-mercaptoethanol Life Technologies Cat #: 21985023

X-tremeGENE9 Transfection Reagent Sigma Aldrich Cat #: 6365779001

XAV939 Cayman Item #: 13031

SB431542 Cayman Item #: 13596

CHIR99021 BioVision Cat #: 1677

PD0325901 Sigma Cat #: PZ0162

Leukemia Inhibitory Factor Millipore Cat #: LIF2050

Retinoic Acid (RA) Sigma-Aldrich R2625

Smoothened Agonist (SAG) Millipore Cat #: 566660

Epidermal Growth Factor Sigma Aldrich Cat #: E5160

Hepatocyte Growth Factor Sigma Aldrich Cat #: H9661

Doxycycline (Dox) Sigma Aldrich Cat #: D9891

L-Ascorbic Acid Sigma Aldrich Cat #: A8960

Insulin-Transferrin-Selenium-Ethanolamine

(ITS-X)

GIBCO Cat #: 51500056

Gentle Cell Dissociation Reagent STEMCELL Technologies Cat #: 100-0485

Critical Commercial Assays

RNAscope Multiplex Fluorescent v2 kit Advanced Cell Diagnostics Cat #: 323100

EasySep Mouse FITC Positive Selection Kit II STEMCELL Technologies Cat #: 17668

Ampure XP SPRI Beads Beckman B23318

Chromium Single Cell 30 Library and Gel

Bead Kit v2

10x Genomics PN-120237

Chromium Single Cell 30 Chip kit v2 10x Genomics PN-120236

Chromium i7 Multiplex Kit 10x Genomics PN-120262

Chromium Next GEM Chip G Single Cell Kit 10x Genomics PN-1000127

Library Construction Kit 10x Genomics PN-1000196

Chromium Next GEM Single Cell 30

GEM Kit v3.1

10x Genomics PN-1000130
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Chromium Next GEM Single Cell 30

Gel Bead Kit v3.1

10x Genomics PN-1000129

Dual Index Kit TT Set A 10x Genomics PN-1000215

Deposited Data

scRNA-seq This paper GEO: GSE145251

Hematopoiesis Development Paul et al., 2015 GEO: GSE72859

Spinal Motor Neuron Differentiation and

Programming

Briggs et al., 2017 GEO: GSE97391

Cardiac Reprogramming Stone et al., 2019 GEO: GSE131328

MEF to iEP Reprogramming Time course Biddy et al., 2018 GEO: GSE99915

Normal and Post Injury Hepatocytes and BECs Pepe-Mooney et al., 2019 GEO: GSE125688

Mouse Gastrulation Atlas Pijuan-Sala et al., 2019 GEO: GSE87038

Mouse Cell Atlas Han et al., 2018 https://figshare.com/articles/MCA_DGE_Data/

5435866

Tabula Muris Tabula Muris Consortium

et al., 2018

https://figshare.com/projects/Tabula_Muris_

Transcriptomic_characterization_of_20_

organs_and_tissues_from_Mus_musculus_

at_single_cell_resolution/27733

Developing Mouse Spinal Cord Atlas Delile et al., 2019 E-MTAB-7320

Experimental Models: Cell Lines

Mouse Cardiac Fibroblasts (CD1, P0) ScienCell Research

Laboratories

Cat #: M6300

293T-17 Cells ATCC RRID:CVCL_1926

Primary Mouse Embryonic Fibroblast

(C57BL/6, E13.5)

N/A

NIL-V5 inducible ESC line Mazzoni et al., 2013 N/A

Experimental Models: Organisms/Strains

Mouse: C57BL/6 The Jackson laboratory RRID:IMSR_JAX:000664

Software and Algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

Seurat V4 Satija et al., 2015; Butler

et al., 2018; Stuart et al., 2019

https://satijalab.org/seurat/articles/get_started.html

Quadprog R package https://cran.r-project.org/web/packages/quadprog/

index.html

Cell Ranger v5.0.1 10x Genomics https://support.10xgenomics.com/single-cell-gene-

expression/software/downloads/latest

Velocyto La Manno et al., 2018 http://velocyto.org/

MASS Venables and Ripley, 2002 https://cran.r-project.org/web/packages/

MASS/MASS.pdf

mixdist R package https://cran.r-project.org/web/packages/

mixdist/mixdist.pdf

Splatter Zappia et al., 2017 https://github.com/Oshlack/splatter

OpenImageR R package https://cran.r-project.org/web/packages/

OpenImageR/OpenImageR.pdf

PAGA Wolf et al., 2019 https://github.com/theislab/paga

SCANPY Wolf et al., 2018 https://scanpy.readthedocs.io/en/stable/

R-4.0.1 R Core Team, 2021 https://www.r-project.org/

RStudio RStudio Team, 2020 https://www.rstudio.com/

Capybara This Paper https://github.com/morris-lab/Capybara
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Recombinant DNA

pMx-MGT Wang et al., 2015 RRID:Addgene_111810

pGCDNSam-Hnf4a-t2a-Foxa1 Morris et al., 2014 N/A

pCL-Eco Novus Biologicals RRID:Addgene_12371

Other

RNAscope probe Mm-Tnnc1-C3 Advanced Cell Diagnostics Cat #: 511011-C3

RNAscope probe Mm-Myh6-C3 Advanced Cell Diagnostics Cat #: 506251-C3

RNAscope probe Mm-Myl4-C2 Advanced Cell Diagnostics Cat #: 443801-C2

RNAscope probe Mm-Actc1 Advanced Cell Diagnostics Cat #: 510361

Opal 520 Reagent Pack Akoya FP1487001KT

Opal 570 Reagent Pack Akoya FP1488001KT

Opal 690 Reagent Pack Akoya FP1497001KT
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Samantha

A. Morris (s.morris@wustl.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Single-cell RNA-seq data have been deposited at GEO and are publicly available. Accession numbers are listed in the key resources

table. All original code, along with tutorials is available at: https://github.com/morris-lab/Capybara. Any additional information

required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL DETAILS

Mouse strain
Mouse Embryonic Fibroblasts (MEFs) were derived from mixed sex E13.5 C57BL/6J embryos (RRID:IMSR_JAX:000664). Timed

pregnant C57BL/6J female mice were purchased from the Jackson Laboratory. All procedures were performed according to an

IACUC approved protocol at Washington University School of Medicine.

Primary cell culture
Passage 0 primary cardiac fibroblasts derived from postnatal day 2 CD1 mice (ScienCell, Catalog #M6300; sex not specified) were

cultured on gelatin-coated plates in Fibroblast Medium-2 (ScienCell, Cat. #2331). MEFs were cultured on gelatin in DMEM supple-

mented with 10% FBS, 50 mM b-mercaptoethanol, and 1X penicillin/streptomycin, and reprogrammed before passage 6.

METHOD DETAILS

Capybara Pipeline Overview
The Capybara pipeline comprises four major steps: 1) Tissue-level classification; 2) High-resolution custom reference generation and

continuous identity measurement; 3) Initial classification into discrete, hybrid, or unknown identities; 4) Discrete cell type classifica-

tion and hybrid identity scoring. Capybara code and documentation are available at: https://github.com/morris-lab/Capybara, along

with detailed function descriptions and tutorials.

Basis of Capybara: Quadratic Programming (Setup). Previous studies have measured continuous changes in cell identity using

Quadratic Programming (QP) (Biddy et al., 2018; Treutlein et al., 2016), where the R package QuadProg was used for the calculation

of QP scores. In brief, the underlying assumption is that each single-cell transcriptome profile exists as a combination of fractional

identities from all possible cell types, described as a linear combination of gene expression profiles from different cell types. This

assumption allows us to model cell identity as a multivariate linear regression problem. For ease of biological interpretation, con-

straints are placed on the coefficients: they are bound between 0 and 1, and the sum of all coefficients does not exceed 1. These

constraints limit the use of least-squares estimators in this scenario, while QP is an optimization approach that minimizes a quadratic

function under the given linear inequalities or equalities.
e3 Cell Stem Cell 29, 1–15.e1–e11, April 7, 2022
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Let Y =

2
664
y1
y2
:::
yn

3
775 denote the transcriptomic profile of genes g1, g2,., gn for a query cell, and Xg;t denotes the reference dataset of the

same set of genes by cell types t1, t2,., tm. The goal is then to calculate the identity score vector ft, such that the random error ε is

minimized, as described below.

min
f
ðY � XfÞT ðY �XfÞsubject to

Xm
i = 1

fi%1;0%ft%1 for t = 1;2;.;m

In addition to the fractional identity score matrix and the error term, each cell receives a Lagrangian multiplier, gauging how much

the solution is pushed toward the constraints. Applying QP offers a quantitative evaluation of cell identity for each cell.

Basis of Capybara: Quadratic Programming (Data processing). Before QP, using raw count matrices, we first perform log-

normalization on both the reference and sample dataset. LetMg;c be the matrix with each row representing a gene and each column

denoting a cell or a cell type. Let m denote the number of columns, and n denote the number of rows. Then, for each column of the

matrix, M�;c,

Normalized M�;c =
M�;cP
M�;c

3

P
g;cMg;c

m
:

The normalized matrix is then log-transformed with a base of 2 and pseudo-count of 1. The reference dataset undergoes further

scaling to ensure that gene expression levels between datasets are comparable. We calculate the scaling factor as the ratio between

ðPg;cMg;c =mÞ of the reference and sample. Further, we filter the gene list of both matrices to include only those genes

shared between the reference and sample.

Step 1: Tissue-level classification. The performance of Capybara hinges on the selection of an appropriate single-cell reference

to classify cell identity. Before assessing cell identity at single-cell resolution, we perform a tissue-level classification designed to

restrict the number of reference cell types included in downstream analysis, reducing excessive noise and dependencies caused

by correlation across tissues in the final single-cell reference. This tissue-level classification is performed using bulk transcriptomics

from ARCHS4, an exhaustive resource platform comprising the majority of published RNA-seq datasets (Lachmann et al., 2018). To

achieve a relatively comprehensive and clean evaluation, we take a two-step approach: 1) construct a clean bulk RNA-seq reference,

and 2) correlation-based tissue classification.

(1) Bulk Reference Construction

ARCHS4, a platform that contains most published RNA-seq and ChIP-seq datasets (Lachmann et al., 2018), was mined for bulk

RNA-seq data. ARCHS4 obtained raw datasets from the Gene Expression Omnibus, which were realigned and processed through a

uniform pipeline. Using this data bank, we first filtered the available datasets to retain only poly-A and total RNA-seq data from

C57BL/6J mice. We then calculated Pearson’s correlations on every sample pair from the same tissue. The top 90 samples with

the highest Pearson’s correlation scores for each of 30 tissues comprised the final bulk reference. For tissues with less than 90 sam-

ples, we took the entire sample set and randomly sampled with replacement to include 90 total samples. For the selected 90 samples

for each tissue, we calculated the average reads per kilobase per million (RPKM) to build the final tissue-level transcriptome profile,

containing a total of 30 tissues.We evaluated the quality of this bulk reference by calculating the identity scores of cells frommanually

annotated single-cell atlases (MCA; (Han et al., 2018) and Tabula Muris; (Tabula Muris Consortium et al., 2018)) based on this recon-

structed reference. We randomly selected 90 cells from each tissue of MCA or Tabula Muris and performed QP using the bulk refer-

ence, where we observe high scores when mapping the same tissue between single-cell and bulk datasets.

(2) Tissue-Level Classification

A potential concern of using QP to directly classify single cells is the correlation between similar cell types from different tissues. In

this scenario, it could be challenging to tease classification results apart if high similarity to the correct cell type drives the high identity

score. Thus, we first perform tissue-level classification to restrict the number of reference cell types in the downstream analysis,

reducing excessive noise and dependencies caused by correlation across tissues in the final single-cell reference. In general, the

three primary inputs of this step include the single-cell reference (e.g., MCA), the sample single-cell dataset, and the constructed

bulk reference. Using the tissue reference, we calculate QP scores for the single-cell reference as well as the sample, where we

obtain two identity matrices. We then compute the Pearson’s correlations of QP scores between each cell from the single-cell refer-

ence and each cell from the sample. We use a threshold at the 90th percentile to binarize the correlation matrix, where a cell-cell pair

with a correlation that is greater than the threshold is marked as 1; otherwise, 0. With the binarized matrix, we count the number of

cells in each tissue of the referencemapping to the sample. If there is a significant percentage of reference cells of a tissue (over 70%)

mapped, we record the tissue label. We then calculate the frequency of each tissue label in the sample. Tissues with a frequency of at

least 0.5% sample cells are selected for further analysis at single-cell resolution. Here, it is worth noting that this tissue-level classi-

fication removes most irrelevant tissues but still provides a broad range of tissue types, at which point further downstream analysis

removes non-relevant cell types (see ‘Cardiomyocyte Reprogramming Analysis,’ below). Additionally, having prior information

regarding the tissues involved can be beneficial to narrow down the tissue selection step, as demonstrated by our analysis of hema-

topoiesis and spinal cord below.
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Step 2: Generation of high-resolution custom references and continuous identity measurement. Having identified the

potential tissues present in a sample from the tissue-level classification, we next assemble a custom single-cell reference data-

set containing the relevant cell types to classify sample cells. An example of such a reference dataset is the Mouse Cell Atlas

(MCA; (Han et al., 2018)), which contains fetal and adult mouse tissues. For each tissue, it offers a detailed cell type breakdown,

including the same cell type with different marker genes, offering a high-resolution map of cell-type composition. This reference

is assembled based on manual annotation of the specific cell types in the tissue involved. A unique feature of scRNA-seq is

dropout - the failure to capture and detect known expressed genes and other technical variation (Lun et al., 2016). Due to

the highly sparse nature of scRNA-seq data, an individual cell transcriptome may not provide a complete representation of a

cell type. To alleviate the effect of these technical variations, we construct pseudo-bulk references for each cell type of

each tissue. We sample 90 cells from each cell type for each tissue. For cell types with more than 90 cells, we calculate Pear-

son’s correlations between each cell pair. Based on the correlation matrices, we select the most correlated 45 cells to ensure

homogeneity and the least correlated 45 cells to capture transcriptional diversity. Cell types with fewer than 90 cells but more

than 30 cells are sampled with replacement to achieve a total of 90 cells. Summation of the counts of the selected 90 cells is

used to construct the final high-resolution reference, assuming homogeneity in the annotated population of the original single-

cell reference. Application of QP using this ‘high-resolution’ reference generates a continuous measurement of cell identity as a

linear combination of all cell types within the reference.

Step 3: Initial discrete, hybrid and unknown classification. As aforementioned, the application of QP generates continuous

identity scores, from which we calculate a deviance metric of the scores from the expected score. QP also provides two additional

metrics: Error and Lagrangian multiplier. Using these metrics together with the continuous scores, we evaluate the likelihood of a cell

to have discrete, hybrid, or unknown identities, compared to the scoring metric of reference cells (Figure S1A). This step can be eval-

uated in two parts: 1) Deviance, 2) Error, and Lagrangian multiplier.

(1) Deviance

The deviance is calculated via comparison between the identity scores to the expected scores ð1 =number of cell typesÞ,
assuming a cell is equally similar to every cell type in the reference. We consider that cells with unique identities will have major de-

viations, while those with unknown identities will haveminor deviations from the expectation. Let f i;j denote the score of a cell i on cell

type j. The deviance is then calculated as follows:

Xnumber of cell types

j =1

abs

�
fi;j � 1

number of cell types

�

Assuming the reference cells are accurately annotated with discrete identities, we first calculate the total deviance of each refer-

ence cell using the identity scorematrix of the reference data.We furthermodel the total deviance from the reference cells as a normal

distribution, serving as the reference distribution of discrete identity cells. Restricting the hybrid cells to have amaximum of two iden-

tities, we establish an ideal distribution for the hybrid cells by shifting the density of discrete identities by 2x standard deviation to the

left. Lastly, the unknowns are expected to have an even lower deviation than the hybrid cells. We then calculate the total deviance of

each sample cell in the same manner. With the established distributions, we obtain probability scores from the evaluation of each

distribution by computing PðXRxÞ. Cells with PðdiscreteÞR0:01 & PðhybridÞR0:95 are considered as discrete. Cells with

PðdiscreteÞ%0:05 & PðhybridÞR0:01 & PðunknownÞR0:95 are considered hybrids. Cells with PðhybridÞ%0:01 & PðunknownÞR0

are considered unknowns.

(2) Error & Lagrangian Multiplier

The selection of cells to build the high-resolution custom reference includes both highly correlated and uncorrelated cells in the

population of the corresponding cell type. Such a selection scheme provides multimodal distributions for the error and Lagrangian

multiplier metric, serving as background distributions for the extreme cases of matching and unmatching cells. Based on the

multimodal density, we build an ideal distribution for the test samples, where the mean is the weighted mean of the mixed normal

distribution, and the standard deviation is the weighted standard deviation of the mixed distribution. We consider unknown cells

will establish higher error (on the right tail). In contrast, hybrid cells will have comparable error levels but a lower Lagrangian multiplier

(on the left tail). In addition, unknowns can be distinguished into unknown progenitors versus unknown end states by considering the

combination of the two distributions. As unknown end states take both higher error and Lagrangian multiplier, unknown progenitors

are considered to have a relatively high error but even lower Lagrangian multiplier than the hybrids. Yet, due to the challenges in de-

convolving overlapping distributions, we could partially distinguish the two unknown cell types leveraging the combination of the two

metrics.

Step 4: Discrete cell type classification and hybrid identity scoring.While continuous identity scores are informative, discrete

cell-type assignment offers a more practical assessment of cell-type composition for a biological system. One approach to call

discrete cell types is to apply a threshold to the calculated continuous scores. However, threshold selection and quality of the custom

high-resolution reference can bias cell type calling via this approach. To overcome this limitation, we apply QP to score cells in the

single-cell reference against the bulk reference. This strategy accounts for reference quality, enabling background matrices to be

generated, charting the distributions of possible identity scores for each cell type. We then take a two-step approach to provide

discrete and hybrid cell type classification: 1) Empirical p value calculation via randomization testing; 2) Mann-Whitney-based binar-

ization and classification.
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(1) Empirical P value Calculation via Randomization Testing

With the constructed single-cell reference, we apply QP to both the sample and reference single-cell datasets to generate contin-

uousmeasurements of cell identity. LetMR denote the identity scorematrix of the reference data with a total ofm cell types and 90,m
cells, where fR;i;j denotes the score of reference cell i on cell type j. LetMS denote the identity score matrix of the sample data with a

total of m cell types and n cells, where fS;i;j denotes the score of sample cell i on cell type j. We then carry out the following steps to

calculate the empirical p values. (1) For each cell type inMR, we randomly sampled 1000 times and constructed a background density

of the identity scores, DR = ½fresample;1;.; fresample; 1000�. (2) For each score in the identity matrices, we calculate the empirical p value

as follows:

pR;i;j =

P1000
h= 1 Iðfresample;h>fR;i;jÞ

1000
; pS;i;j =

P1000
h=1 Iðfresample;h>fS;i;jÞ

1000
;

where Ið �Þ= 1 if ð �Þ is true; otherwise, Ið �Þ = 0. (3) Next, we repeat steps (1) and (2) for a total of 50 rounds, recording the empirical p

values matrix for each cell of both the reference and the sample. The result of this step includes two lists of p value matrices: one for

the reference and the other for the sample. For each cell, each column of the p value matrix denotes a cell type, while each row de-

scribes each round of 50.

(2) Binarization and Classification

From randomization testing, we construct two lists of empirical p value matrices: one for all sample cells, Ps, and the other for all

reference cells, PR. Using the list for all reference cells and their annotation data, we computed a benchmark empirical p value for

each cell type. Specifically, the annotation data contains cell barcodes and associated annotated cell types. For each cell c and

its annotated cell type t0, we identified the corresponding list of empirical p values, P
ðcÞ
R; �;t0 . As a result, we construct a possible range

of p values for each cell type, t, from which we generate the benchmark values. For each cell type t, we eliminate the outlier p values

and select themaximum p value of the remaining cells as the final benchmark score,Bt = ½Bt1; .; Btm�. Outlier p values are identified

based on the definition of outliers in the boxplot (outside of 1.5x the interquartile range above the third quantile or below the first

quantile).

Next, we evaluate the sample list with the initial classification results. If the cell is initially considered an unknown, it is skipped for

this statistical framework evaluation. The length of the sample list, n, is the number of sample cells. The nth empirical p value matrix

P
ðnÞ
S;k;t in the list defines empirical p value for the nth sample cell belonging to reference cell type t under the kth resampling background,

where 1%k%50. We rank all empirical p values inside the matrix, from the lowest to the greatest, and break any tie by averaging. The

rank-sum for each column t of P
ðnÞ
S;k;t is then calculated, and the cell type with the lowest rank-sum, t*, is determined to be the putative

identity for cell c. We then compare meanðPðcÞ
S;�;t� Þ to Bt� to assign an identity for cell c. To assign cells harboring hybrid identities,

recapitulating those identities, we perform a pairwise Mann–Whitney U test between the t* column and other columns of P
ðnÞ
R;k;t.

For any cell type t’ with rank-sum that is not significantly greater than the rank-sum of t* (significant level = 0.05), we consider t’

to be one of multiple identities of query c along with t*. Applying this process to each cell, we generated a binary matrix with 1 = pu-

tative identities. Further, we generate a classification table with labeled cell types for each cell barcode.

Transition Scoring. Hybrid cells label critical transition states in different trajectories. Building on this concept, we measure the

strength and frequency of connection to the discrete cell state, which provides a metric that we define as a ‘transition score.’ The

calculation of transition scores only involves cells with hybrid identities. In general, using QP, each cell receives fractional identity

scores for different cell types in the reference. Interpreting QP as probabilities of the cell transitioning to each discrete cell identity,

we use QP scores to measure transition probability.

For a cell marked with multiple identities, we consider a transition between the cell to its terminal cell state as events with the tran-

sition probability measured by QP scores Pi; j, where i denotes the cell and j denotes the cell state. Therefore, based on information

theory, the information of such transition event can be measured as IðtransitionÞ = � logðPi; jÞ. We further consider how much infor-

mation the terminal cell state has received, which can be defined as:

IðreceivedÞ = Pi; j 3 IðtransitionÞ= � Pi; j 3 logðPi; jÞ:
Thus, the total amount of information received for cell state j from n connected cells can be computed as:

IðreceivedÞ =
Xn

i = 1

�Pi; j 3 logðPi; jÞ:

The measurement appears to be similar to Shannon’s entropy. However, we note that with each cell independently in transition,

probabilities from all events do not necessarily add up to 1, distinguishing it from a measure of entropy. Here, to demonstrate this

metric, consider an example as demonstrated in Figure 3F, where Cells 1 to 5 harbor multiple identities connecting Cell State I to

III. In this example scenario, the transition score for Cell State II can be calculated as:

IðCell State IIÞ = � P1;II 3 logðP1;IIÞ � P2;II 3 logðP2;IIÞ � P3;II 3 logðP3;IIÞ � P5;II 3 logðP5;IIÞ:
Using such measurement, we incorporate the frequency and the likelihood of connection such that high information labels a

discrete cell state associated with an abundance of dynamic cell transitions.
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Benchmarking Capybara. To assess the efficacy and robustness of Capybara to classify cell identity, we validate each step and

demonstrate its basic functionality. In the first step of the Capybara pipeline, tissue-level classification, accuracy is pivotal as it helps

reduce noise from other cell types that are not present in the sample. We evaluate the validity of the tissue reference transcriptome

based on the identity scores of annotated single-cell atlases (Han et al., 2018; Tabula Muris Consortium et al., 2018). We randomly

selected 90 cells from each tissue of MCA and Tabula Muris using the bulk reference, where we observed higher scores mapping of

the same tissue between single-cell and bulk.

Next, we assess the classification functionality of Capybara. In this step, we use a benchmarking algorithm that was developed to

compare a range of single-cell classification approaches using an array of publicly available datasets (Abdelaal et al., 2019). Briefly,

we perform 10-fold cross-validation using various datasets. Here, the predictions from the methods are assessed based on the area

under the receiver operating characteristics (AUROC) using the multiclass.roc function in R. Based on five human pancreatic data-

sets and Allen Mouse Brain Atlas, the performance of Capybara indicates similar accuracy (rank 5) and median F1 score (rank 4.2)

with reasonable runtime when benchmarked against ten other classifiers (Figure S1B). In this benchmarking method, 5-fold cross-

validation provides a relatively large training set (80%) compared to the test set (20%). A key feature of Capybara is its flexible require-

ment in terms of training set size. We find that a minimum number of 90 cells sampled from each cell type is required to perform

accurate classification. For cell types with fewer than 90 cells, we require a minimum of 30 cells, from which a 90-cell sample will

be drawn with replacement from the pool. Using this minimum number of cells, we evaluate our performance using the Tabula Muris

mouse cell atlas (Tabula Muris Consortium et al., 2018). Using AUROC scores and accuracy, we benchmark our method against two

other classification approaches, scmap (Kiselev et al., 2018) and SingleCellNet (Tan and Cahan, 2019). As a result, we demonstrate

the comparable performance of Capybara with excellent performance (AUROC > 0.8).

Generation of simulated data
We use Splatter, an R-based simulation framework based on Gamma-Poisson distribution, to simulate a single-cell dataset

comprising distinct differentiation paths (Zappia et al., 2017). We design the cell population to originate from a progenitor state

(P1) bifurcating toward two discrete states (E1: End State #1; P2: Progenitor State #2). P2 progenitor cells bifurcate further toward

end states #2 and #3 (E2 and E3, respectively; Figure 1B, C). Using this simulated dataset, we assess if Capybara can: 1) Capture

cells with unique identities; 2) Identify cells that do not correlate with any cell types in the reference; 3) Characterize transition cells

with multiple identities. E1, P2, and E2 cell populations were defined as within 5% variability of the maximum pseudotime at each

terminal. We construct a reference using 90 of the most correlated and diverse cells from E1, P2, and E2 cell populations. Cells in

E1, P2, and E2 that did not contribute to the reference are used to test the efficacy of accurate classification. The remaining cell pop-

ulations are not included in the reference to test how Capybara classifies cells with no correlates in the reference.

Capybara Analysis with Previously Published scRNA-seq data
(1) Paul et al. (2015) Mouse Hematopoiesis Analysis

We obtained the raw hematopoiesis count data from GSE72859 (Paul et al., 2015). The data was processed and clustered using

SCANPY (Wolf et al., 2018) and PAGA (Wolf et al., 2019). From processing, we included 3,451 genes in the dataset of 2,730 cells.

We first perform tissue-level classification with the bulk reference established using ARCHS4, as described in the previous sections.

From this, we identified three major relevant tissues: primary mesenchymal stem cells (bone marrow mesenchyme), bone marrow,

and bone marrow (c-Kit). Further breakdown of these three major tissues using the MCA (Han et al., 2018) resulted in 49 different cell

types. We constructed the high-resolution reference using these 49 cell types. 90 cells were selected from each cell type as

described above and saved as the reference single-cell dataset. Followed by preprocessing, we applied QP on the reference and

sample single-cell dataset, based on which we further categorized them to discrete, hybrid and unknown, calculated empirical p

values, performed binarization and classification. We projected cells with single identities onto the cluster embedding from PAGA.

Cells with hybrid identities were isolated, and we extracted the pseudotime for these cells and their terminal cell identities. We re-

assessed these hybrid cells using their scores. If one of the identities scored near zero (score < 10E-3), we considered such identity

as inaccurate and discarded it. In this process, we re-evaluated transitioning cells, retaining only those cells with relatively higher

shared identity scores. For a hybrid identity to be considered usable, it needs to be represented by more than 0.5% of the sample

population. Using this filtering, we alleviate potential transitions due to noise but maintain the more putative transitions. A Wilcoxon

test was used to compare if the pseudotime density differs comparing hybrids with their discrete identity parts.

(2) Weinreb et al. (2020) Mouse Hematopoiesis Lineage-Tracing Analysis

We obtained the normalized InDrop single-cell data, annotation, and SPRING embedding for mouse hematopoiesis lineage-tracing

dataset from https://github.com/AllonKleinLab/paper-data. In this analysis, we mainly focused on the Lin- Sca+ cKit+ (LSK) popula-

tion, containing a total of 72,946 cells. We constructed the high-resolution reference using 90 cells in each of the major day 6 differ-

entiated cell types, including basophils, eosinophils, mast cells, monocytes, and neutrophils. Considering the myeloid differentiation

culture conditions, we selected these five populations as they represent the continuous expanding populations from day 2 to day 6.

Following preprocessing, we generated the continuous identity score measurements for the remaining LSK cells using QP, followed

by initial classification, binarization, and classification. Leveraging the lineage information in the dataset, we then identified clones

that contained hybrid cells on day 4 to evaluate their siblings on day 4 and progeny on day 6. To compare with the hybrid-containing

clones, we also identified day 4 clones that are strictly represented by the discrete compartments of the hybrids. For instance, while

assessingmonocyte-neutrophil hybrids, we compared the siblings and progeny of day 4 clones strictly represented bymonocytes or
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neutrophils. Enrichment of populations was tested via randomization testing. Briefly, for the clones representing the hybrid and its

siblings, we randomly sampled the same number of cells as the clones from the entire population and calculated the proportion

of the cell type represented in the sample. We iterated this process 10,000 times to establish a distribution. The likelihood of propor-

tions presented in the hybrid family was evaluated based on this density, providing empirical p values.

(3) Pijuan-Sala et al. (2019) Mouse Gastrulation Transition Score Analysis

We obtained 10x scRNA-seq UMI count data and annotation of mouse gastrulation from GSE87038 (Pijuan-Sala et al., 2019),

containing 139,331 cells. The dataset was processed using Seurat (Butler et al., 2018; Satija et al., 2015). We performed clas-

sification using all 23 tissues, composed of 361 cell types, in the adult MCA as a reference directly (Han et al., 2018). We con-

structed the high-resolution reference using these annotated cells. Following preprocessing, we generated continuous identity

score measurements for these cells using QP, followed by initial classification, binarization, and classification. We then per-

formed Capybara transition scoring analysis for each sample, analyzing transition score distributions of each annotated cell

type from Pijuan-Sala et al.

(4) Stone et al. (2019) Cardiomyocyte Reprogramming Analysis

Weobtained the 10x single-cell RNA-sequencing count data fromGSE131328 (Stone et al., 2019), containing 30,729 cells. This data-

set was processed using Seurat (Butler et al., 2018; Satija et al., 2015) and UMAP.We used raw data from the filtered cells and genes

as input into the Capybara pipeline. We next performed tissue-level classification using ARCHS4 (Lachmann et al., 2018), as

described in previous sections, revealing four major tissues, including neonatal skin, neonatal heart, fetal stomach, and fetal lung.

Further breakdown of these tissues usingMCA (Han et al., 2018) contains 57 cell types. We constructed the high-resolution reference

using these annotated cells. Following preprocessing, we generated the continuous identity score measures of these cells using QP,

based onwhichwe further performed initial classification, binarization, and classification.We calculated the percentage of each iden-

tified cell type in the population. Additionally, we computed the transition scores for the cell states involved in transitions. We per-

formed transition score comparisons using a one-sided Wilcoxon test. We identified region-specific markers from MuscleDB

(http://muscledb.org/mouse/mRNA/).

(5) Briggs et al. (2017) In Vitro Spinal Cord Motor Neuron Derivation Analysis

We obtained 10x scRNA-seq UMI count data and annotation of developing mouse spinal cord from https://www.ebi.ac.uk/

arrayexpress/experiments/E-MTAB-7320/ (Delile et al., 2019), including 38,976 cells. We removed unannotated cells and built a

high-resolution reference for each cell type at each developmental stage (E9.5 to E13.5), resulting in a total of 118 cell types (19 types

for E9.5, 26 for E10.5, 26 for E11.5, 25 for E12.5, 22 for E13.5). We also included embryonic stem cells from theMCA (Han et al., 2018).

We obtained the InDrop single-cell dataset for in vitro spinal cord motor neuron derivation from GSE97391 (Briggs et al., 2017). The

in vitro datasets were processed and clustered using Seurat (Butler et al., 2018; Satija et al., 2015). From processing, we included

7,860 genes and 7,799 genes in the dataset of 1,984 cells and 2,720 cells in direct programming (DP) and direct differentiation

(DD), respectively. We analyzed ESCs from each protocol separately. Following preprocessing, we applied QP using the high-res-

olution reference on four datasets, including two ESC populations, DP and DD. Based on the identity score matrices, we categorized

them into discrete, hybrid, and unknown, calculated the empirical p value matrices, performed binarization and classification. Cells

with discrete identities were separated to calculate the composition in the ventricular zone andmantle zone. The ventricular zone also

included the neural crest neurons and mesoderm lineage. Hybrid cells were filtered and refined, as described in the above hemato-

poiesis section. With the QP scores attached to each identity in the mixed set, we calculated the transition scores for the cell states

involved, as described in the transition scoring section. We compared transition scores between different time point via a one-sided

Wilcoxon test.

(6) Biddy et al. (2018) MEF to Induced Endoderm Progenitor Analysis

Weprocessed scRNA-seq data of induced endoderm progenitor (iEP) reprogramming, as previously described (Biddy et al., 2018). In

brief, Scater was used to normalize (McCarthy et al., 2017) the data across time points, and Seurat (Butler et al., 2018; Satija et al.,

2015) was used to integrate biological replicates, perform clustering, and visualize cells using t-SNE.We performed tissue-level clas-

sification using ARCHS4 (Lachmann et al., 2018), as described in previous sections, highlighting the involvement of 9 potential tis-

sues, containing a total of 73 cell types. Following the construction of a high-resolution reference, we performed preprocessing on the

reference and the sample, on which we then applied QP to generate the identity score matrices. Further, we categorized cells into

discrete, hybrid, and unknown, calculated the p value matrices, and performed binarization and classification. We calculated the

percent composition of each cell type. Cells with hybrid identities were filtered as described in the above hematopoiesis section,

represented by more than 0.5% cells of the population.

We obtained scRNA-seq data of biliary epithelial cells (BECs) and hepatocytes, before and after injury, from GSE125688

(Pepe-Mooney et al., 2019). We built a custom high-resolution reference by incorporating additional tissues from the MCA: fetal

liver, MEFs, and embryonic mesenchyme. The long-term iEPs were cultured for 12 months before collection and processing.

We had previously used these cells to engraft mouse colon (Guo et al., 2019; Morris et al., 2014). The long-term iEP dataset

was processed, filtered, and clustered using Seurat. We also used Seurat to generate module scores of BEC identity, using

a panel of markers from (Verhulst et al., 2019). We then constructed the high-resolution reference panel with 20 cell types

and performed preprocessing on the reference and single-cell sample. Application of QP using the processed reference and

long-term iEP and iEP reprogramming datasets provides us the continuous metric of identity scores, from which we carried

out initial classification, binarization, and classification. Gene expression was compared between groups via Wilcoxon test.
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10x alignment, digital gene expression matrix generation

The Cell Ranger v5.0.1 pipeline (https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest) was

used to align reads, process, and filter data generated using the 10x Chromium single-cell gene expression platform. Following

this step, the default Cell Ranger pipeline was implemented to generate the filtered output data for downstream analysis.

scRNA-seq Data Processing
To process and analyze scRNA-seq data, we used the R package, Seurat V4 (https://satijalab.org/seurat/articles/pbmc3k_tutorial.

html). Briefly, each sample was pre-processed based on RNA counts and mitochondrial read percentages and then normalized. The

highly variable genes were then identified, followed by scaling and dimensional reduction via PCA. With the selected number of com-

ponents, graph-based clustering and UMAP plotting were further performed.

(1) Cardiac Reprogramming

When comparing our data with Stone et al., 2019, the data were integrated using canonical correlation analysis andmutual nearest

neighbor with the Seurat V4 pipeline (Butler et al., 2018; Stuart et al., 2019). The similarity between the dataset was evaluated based

on cosine similarity between the cluster representation in the two datasets.

(2) In Vitro Motor Neuron Programming and iEP Reprogramming

To evaluate reproducibility, datasets for each treatment were integrated across the two biological replicates following the same

process described above. The integrated Seurat objects were further integrated to evaluate the effect of different treatment groups.

scRNA-seq Data Capybara Analysis
With the tissues identified from the corresponding publicly available dataset, we started from step 2 of the Capybara pipeline for the

single-cell RNA-sequencing data we generated for this study. Using the raw counts, we performed preprocessing on the reference

and the sample, on which we then applied QP to generate the identity score matrices. Further, we categorized them into discrete,

hybrid, and unknown, calculated the empirical p value matrices, and performed binarization and classification. We calculated the

percent composition of each cell type. Cells with hybrid identities were filtered as described in the above hematopoiesis section,

represented by more than 0.5% cells of the population.

Experimental Methods
Reprogramming Virus Production

The retrovirus for cardiac and induced endoderm progenitor (iEP) reprogramming was freshly prepared. 293T cells

(RRID:CVCL_1926) were maintained and passaged in fibroblast media (10% FBS, 1x penicillin-streptomycin, 1x b-Mercaptoethanol,

in DMEM). 293T cells were seeded at a density of 3 million per 10-cm plate the day before transfection. The following day, the cells

were transfected with pMX-MGT (RRID:Addgene_111810) or pGCDN-Sam-Hnf4a-t2a-Foxa1 with 5mg of pCL-Eco (RRID:Addg-

ene_12371), using X-tremeGENE 9 DNA transfection reagent (Sigma, 6365779001) according to the manufacturer’s instructions.

Media was replaced with fresh fibroblast media the following day. Retrovirus was harvested the next day by taking the supernatant

from the transfected plate and filtered through a 45-mm syringe filter. 500x protamine sulfate was added to the viral media prior to

transduction of the mouse cardiac fibroblasts (cardiac reprogramming) or mouse embryonic fibroblasts (iEP reprogramming).

Cardiomyocyte Reprogramming

Direct cardiac reprogramming was performed using primary cardiac fibroblasts derived from a postnatal day 2 CD1 Mouse

(ScienCell, Catalog #M6300) following previously published protocols (Ieda et al., 2010; Qian et al., 2013; Stone et al., 2019). Briefly,

cardiac fibroblasts (MCFs) were cultured overnight on gelatin-coated plates in Fibroblast Medium-2 (ScienCell, Cat. #2331). MCFs

were passaged 1-2 times, cultured for�5 days for expansion, and prepared for selection of Thy1+ (RRID:AB_273503) cells byMACS.

After sorting, MCFs were plated at a density around 100k�200k per 6-cm dish pre-treated overnight with gelatin (day �1). Thy1+

MCFs were transduced with freshly harvested pMX-MGT retrovirus (Wang et al., 2015) (day 0). The viral media was replaced with

fresh cardiomyocyte media (10% M199, 10% FBS, 1% NEAA, 1% sodium pyruvate, 1x penicillin-streptomycin, 1x Glutamax, in

DMEM) containing 2.6mM SB431542 (Cayman Chemical, Catalog #13031) or DMSO as a vehicle control (day 1). 5mM XAV939

(Cayman Chemical, Catalog #13596) or DMSO was added to the plate without media change (day 2). The media was replaced

with fresh cardiomyocyte media two days after the last addition of small molecule (day 4). Media was renewed every 2�3 days.

The cells were collected, filtered through a 70mm strainer, resuspended in 1% BSA in PBS, and counted on Day 14 for scRNA-

seq (see below).

Immunostaining for day 14 Reprogrammed Cells in Cardiac Reprogramming

Mouse cardiac fibroblasts were generated as described above. On day 13 of reprogramming, the cells were transferred to

4-Chamber Culture Slides (Falcon). On the next day, the cells were rinsed with 1x DPBS and fixed in 4% paraformaldehyde for

20 min at room temperature. The samples were then washed with 1x DPBS three times, permeabilized, and blocked with blocking

buffer (0.2% Triton X-100 and 3% FBS in DPBS) for one h. The primary antibodies, MYL2 (RRID:AB_10563535) and MYL7

(RRID:AB_10848272), were diluted 1:250 (MYL2 and MYL7) in blocking buffer. The blocking buffer was then removed from the sam-

ple, and the primary antibodies were added. The samples were incubated with the primary antibody at 4�C overnight (12 h). The sam-

ples were then washed for 5 min three times. The secondary antibodies, Alexa Fluor 546 Goat Anti-rabbit IgG (RRID:AB_2534093)

and Alexa Fluor 488 Goat Anti-mouse (RRID:AB_2534088), were diluted 1:1000 in blocking buffer. Secondary antibodies were added

and incubated at 4�C overnight (12 h). The samples were washed again for 5 min, three times. 100 ml of 300 nMDAPI (Invitrogen) was
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added to each slide chamber and incubated at room temperature for 1 min. Following a DPBS wash, a coverslip was then applied

with ProLongGold AntifadeMountant (Invitrogen). The slides were imaged using anOlympus FV1200Confocal Microscopewith 10x,

20x, and 40xwater objectives. The number of positive cells was counted in each channel using ImageJwith ‘‘Analyze Particles’’ func-

tion. The total number of cells was determined based on the DAPI counts.

RNA Fluorescent in Situ Hybridization

On day 13 of mouse cardiac reprogramming (above), the cells were transferred to 4-Chamber Culture Slides (Falcon). The next day,

cells were rinsed with 1x DPBS and fixed with 10% Neutral Buffered Formalin for 30 min at room temperature. RNAscope Multiplex

Fluorescent v2 kit (Advanced Cell Diagnostics) was used to performRNA-FISH to probeMyh6,Myh7,Myl4, Actc1, and Tnnc1mRNA,

following the protocol for cultured adherent cell samples. Briefly, the slides were treated with hydrogen peroxide and RNAscope pro-

tease III (Advanced Cell Diagnostics). Then, the slides were incubated to hybridize with the specified probes using the RNAscope

HybEZ II Oven (Advanced Cell Diagnostics). Probes were then amplified, and the HRP signal was developed using Opal dyes (Akoya,

Opal 520: FP1487001KT; Opal 570: FP1488001KT; Opal 690: FP1497001KT). The dyes were reconstituted following the manufac-

turer’s instruction in DMSO and diluted 1 to 2000 in TSA Buffer for signal development. Finally, DAPI (Advanced Cell Diagnostics)

staining was applied to the slide, and a coverslip was then applied with ProLong Gold Antifade Mountant (Invitrogen). The slides

were imaged using an Olympus FV1200 Confocal Microscope with 40x and 60x water objectives. Images were then analyzed using

computational quantification: RNA-FISH images were first processed through ImageJ to ensure the samemaximum intensity across

images. Through ImageJ, individual cells were segmented into smaller regions. All three channels of each selection were stored for

further processing with a custom R script to quantify intensity at single-cell resolution. Individual cells were read in as individual

matrices, where averaged green and red intensity were calculated and compared.

Motor Neuron Programming from mouse ESCs

The NIL (Ngn2-Isl1-Lhx3)-V5 inducible ESC line was previously described (Mazzoni et al., 2013). All the inducible ESC lines were

grown in 2-inhibitors medium (Advanced DMEM/F12:Neurobasal (1:1) Medium (GIBCO), supplemented with 2.5% ESC-grade fetal

bovine serum (vol/vol, Corning), N2 (GIBCO), B27 (GIBCO), 2mM L-glutamine (GIBCO), 0.1 mM b-mercaptoethanol (GIBCO),

1000 U/mL leukemia inhibitory factor (Millipore), 3mM CHIR (BioVision) and 1 mM PD0325901 (Sigma). To obtain Embryoid bodies

(EBs) ESC were trypsinized (GIBCO) and 3 3 105 cells were plated in each 100 mm dish in AK medium (Advanced DMEM/

F12:Neurobasal (1:1) Medium, 10% Knockout SR (vol/vol) (GIBCO), Pen/Strep (GIBCO), 2mM L-glutamine and 0.1 mM

2-mercaptoethanol) (day �2). After 48 h, EBs were passed 1:2, and the inducible cassette was induced by adding 3 mg/mL of

Doxycycline (Sigma) and/or 1 mM all-trans retinoic acid and/or 0.5 mM smoothened agonist (SAG) (Millipore, 566660). Differenti-

ating EBs were washed three times with PBS, dissociated with Trypsin, and pipetted into single-cell suspensions. After 48 h, cells

were preserved in methanol (Alles et al., 2017) before processing for single-cell profiling (below).

Long-term iEP culture

Mouse Embryonic Fibroblasts were derived from the C57BL/6J strain (RRID:IMSR_JAX:000664). All animal procedures were based

on animal care guidelines approved by the Institutional Animal Care and Use Committee. Mouse embryonic fibroblasts were reprog-

rammed to iHeps/iEPs, as in Sekiya and Suzuki (2011). Briefly, fibroblasts were prepared fromE13.5 embryos and serially transduced

with polyethylene glycol concentrated Hnf4a-t2a-Foxa1, followed by culture on gelatin for two weeks in hepato-medium

(DMEM:F-12, supplemented with 10% FBS, 1 mg/mL insulin (Sigma-Aldrich), dexamethasone (Sigma-Aldrich), 10 mM nicotinamide

(Sigma-Aldrich), 2 mM L-glutamine, 50mM b-mercaptoethanol (Life Technologies), and penicillin/streptomycin, containing 20 ng/mL

hepatocyte growth factor (Sigma-Aldrich), and 20 ng/mL epidermal growth factor (Sigma-Aldrich)), after which the emerging iEPs

were cultured on collagen and passaged twice per week for three months.

Matrigel Sandwich Culture of Long-term iEPs

We adapted the culturing method from Ogawa et al., 2015 and Okabe et al., 2009. Briefly, 70% Matrigel in DMEM was added as a

bottom layer to the plate, 96-well glass-bottom plate (20 ml) or glass-bottom 35mm m-Dish (100 ml; iBidi) or 6-well plate (100 ml). The

bottom layer was allowed to solidify at 37�C for 30 min. Long-term iEPs were dissociated using 0.05% Trypsin-EDTA (diluted from

0.25%; GIBCO, Cat #: 25200056). The cells were resuspended in pre-chilled OVM-medium (William’s Emedium, supplemented with

10% FBS, dexamethasone, 10 mM nicotinamide, 2 mM L-glutamine, 0.2 mM ascorbic acid, 20 mM HEPES, 1% penicillin/strepto-

mycin, 1% sodium pyruvate, 0.15% of 7.5% sodium bicarbonate, 14 mM glucose, containing 1x ITS-X (GIBCO), 20 ng/mL hepato-

cyte growth factor (Sigma-Aldrich), and 20 ng/mL epidermal growth factor (Sigma-Aldrich)). The top layer was prepared with 40%

Matrigel, with 1.2mg/mL Collagen Type I (GIBCO, stock of 3mg/mL), mixed with 20k cells for each well of 96-well plate, or 80k for

each well of a 6-well plate. After 30 min, the top layer was added to the plate and allowed to solidify and set in the incubator for

45 min. After the top layer solidified, pre-warmed OVM medium was added. The medium was changed every other day. After five

days of gel culture, the cells were imaged and processed for single-cell profiling (below).

iEP Preparation from Matrigel Culture for Single-Cell Profiling

Cells in 3D gel-culture were dissociated using a combination of Type I Collagenase (GIBCO; 100 ml of 500 mg/mL Type I Collagenase

in 1mL of OVM) and 1ml of Gentle cell dissociation reagent (STEMCELL Technologies). Briefly, themediumwas carefully pipetted off,

and 1 mL of enzyme mix was added to each well of the 6-well plate. The plate was incubated at 37�C for 10 min. The partially disso-

ciated gel was collected into a 15 mL Falcon tube, further mixed on a rocker for 15 min at room temperature. The cells were then

pelleted at 300xg for 5 min and washed with 1ml HBSS. The solution was passed through a 27-gauge needle using a 3 mL syringe.

The cells were counted, centrifuged, resuspended in 0.04%BSA in 1x DPBS, and passed through a 70 mmcell strainer before loading

onto the 10x Chromium Single Cell Chip.
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Immunofluorescence Staining of Branching iEPs

iEPs were 3D-cultured in a 96-well glass-bottom plate or glass-bottom 35mm m-Dish for imaging. For immunostaining, cells were

washed with 1x DPBS three times and fixed overnight in 4% paraformaldehyde at 4�C. The fixed sample was then washed twice

with 1x DPBS for 15 min, permeabilized, and blocked with blocking buffer (0.2% Triton X-100 and 3% FBS in DPBS) for 10 min at

room temperature. The primary antibodies, EpCAM (RRID:AB_394370) and CK19 (RRID:AB_2281020), were diluted at 1:100

(EpCAM) and 1:200 (CK19) in the blocking buffer. The samples were incubated with the primary antibodies at 4�C overnight

(12 h). The sample was then washed for 15 min three times. Secondary antibodies Alexa Fluor 546 Goat Anti-rabbit

(RRID:AB_2534093), and Alexa Fluor 647 Goat Anti-rat IgG (RRID:AB_141778), were diluted 1:500 (Alexa Fluor 546 and Alexa Fluor

647) in the blocking buffer. 50 ml of 300 nMDAPI (Invitrogen) was addedwith the secondary antibodies and incubated at 4�Covernight

(12 h). The samples were washed again for 15 min three times. Cells in 96-wells were imaged as a 3D z stack using a Zeiss LSM 880

Confocal with Airyscan, with a 40x air objective. Samples in the 35-mm dish were transferred to a slide, covered with a coverslip with

ProLong Gold AntifadeMountant (Invitrogen), and imaged using an Olympus FV1200 Confocal Microscope with 40x water objective.

Representative images were chosen.

Single-cell profiling

For single-cell library preparation on the 10x Genomics platform, we used: the Chromium Single Cell 30 Library & Gel Bead Kit v2

(PN-120237), Chromium Single Cell 30 Chip kit v2 (PN-120236), and Chromium i7 Multiplex Kit (PN-120262), according to the man-

ufacturer’s instructions in the Chromium Single Cell 30 Reagents Kits V2 User Guide. Prior to cell capture, methanol-fixed cells were

placed on ice, then spun at 3000rpm for 5 min at 4�C, followed by resuspension and rehydration in PBS, according to Alles et al.,

2017. 17,000 cells were loaded per lane of the chip, aiming to capture 10,000 single-cell transcriptomes. The resulting cDNA libraries

were quantified on an Agilent Tapestation and sequenced on an Illumina HiSeq 2500. For analysis of cardiomyocyte reprogramming,

The Chromium Single Cell 30 (v2) Reagent Kits (PN-120237, PN-120236, PN-120262) were used to prepare single-cell RNA-seq

libraries, according to manufacturer’s guidelines. Libraries were pooled and sequenced on an Illumina NextSeq 550. For motor

neuron programming, prior to loading the 10x chip, methanol-fixed cells were counted, spun, resuspended in 1% BSA in PBS,

and counted again, according to 10x Genomics methanol fixation protocol. The Chromium Single Cell 30 (v2) Reagent Kits

(PN-120237, PN-120236, PN-120262) were used to prepare single-cell RNA-seq libraries, according to manufacturer’s guidelines.

Libraries were pooled and sequenced on an Illumina NextSeq 550.

QUANTIFICATION AND STATISTICAL ANALYSIS

SeeMETHODS DETAILS; Capybara Pipeline Overview for software details and statistical approach. Group sizes and statistical tests

are indicated in the text. In all figures, error bars indicate standard deviations. Sample sizes and numbers of replicates are indicated in

the figure legends.
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