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SUMMARY

Kidney organoids derived from human pluripotent
stem cells have great utility for investigating organo-
genesis and disease mechanisms and, potentially,
as a replacement tissue source, but how closely or-
ganoids derived from current protocols replicate
adult human kidney is undefined. We compared
two directed differentiation protocols by single-cell
transcriptomics of 83,130 cells from 65 organoids
with single-cell transcriptomes of fetal and adult kid-
ney cells. Both protocols generate a diverse range
of kidney cells with differing ratios, but organoid-
derived cell types are immature, and 10%–20% of
cells are non-renal. Reconstructing lineage relation-
ships by pseudotemporal ordering identified ligands,
receptors, and transcription factor networks associ-
ated with fate decisions. Brain-derived neurotrophic
factor (BDNF) and its cognate receptor NTRK2 were
expressed in the neuronal lineage during organoid
differentiation. Inhibiting this pathway improved
organoid formation by reducing neurons by 90%
without affecting kidney differentiation, highlighting
the power of single-cell technologies to characterize
and improve organoid differentiation.

INTRODUCTION

Chronic kidney disease affects 26–30 million adults in the

United States, and 11% of individuals with stage 3 chronic kid-

ney disease (CKD) will eventually progress to end-stage renal

disease (ESRD), requiring dialysis or kidney transplantation

(Coresh et al., 2007). In 2015, 18,805 kidney transplants were

performed in the United States, but 83,978 patients were

left waiting for a transplant because of a shortage of organs

(United States Renal Data System, 2017). New treatments to

slow progression of kidney disease are desperately needed,

but progress has been slow, in part because the kidney is a

complex organ but also because the relevance of rodent kidney
models to human kidney disease is debated (de Caestecker

et al., 2015).

In this context, the emergence of methods to direct the differ-

entiation of human pluripotent stem cells (PSCs) to kidney orga-

noids has been received with great excitement (Lam et al., 2014;

Morizane and Bonventre, 2017; Taguchi and Nishinakamura,

2017; Takasato et al., 2015; Xia et al., 2013). Over the last 4

years, several groups have published stepwise protocols, all

based on kidney development during embryogenesis, resulting

in generation of kidney tissue in vitro (Morizane and Bonventre,

2017; Taguchi and Nishinakamura, 2017; Takasato et al., 2016;

Xia et al., 2014). These protocols modulate the activity of several

signaling pathways, principally Wnt and Fgf, to generate renal

progenitor populations that ultimately self-organize. Mature or-

ganoids contain up to hundreds of nephron structures, including

glomeruli, properly segmented tubules, and interstitial cell types.

The ability to grow kidney organoids frompatient-derived tissue

offers unprecedented opportunities for the investigation of human

kidneydevelopment,homeostasis, anddisease.For example, kid-

ney organoids have been used to successfully model and screen

for modifiers of autosomal dominant polycystic kidney disease

(Czerniecki et al., 2018; Freedman et al., 2015), acute kidney injury

(Morizane et al., 2015), and vascularization of the glomerular tuft

(Sharmin et al., 2016). A long-term goal is to generate transplant-

able kidneys grown in the laboratory, although many challenges

remain. Bulk RNA sequencing has suggested that kidney organo-

ids aremost similar to first-trimester kidney (Takasato et al., 2015),

and a recentmarker analysis indicates that organoid nephrons are

in the late capillary loop stage (Przepiorski et al., 2018), so

improving organoidmaturation is one suchchallenge.Nocompre-

hensive analysis of exactly which cells kidney are generated by

these protocols, their degree of maturation with respect to adults,

and the extent towhich off-target cells contaminate organoids has

beenundertaken todate. This information is a prerequisite for opti-

mizing differentiation protocols to ultimately leverage kidney orga-

noids for investigation of themost common adult kidney diseases,

such as CKD, diabetic nephropathy, and acute kidney injury.

Here we used single-cell RNA sequencing (scRNA-seq) and

single-nucleus RNA-seq (snRNA-seq) to generate comprehen-

sive molecular maps describing kidney organoid cell diversity

in two separate, commonly employed differentiation protocols

and two separate pluripotent cell lines as well as in adult human
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Figure 1. Comprehensive Single-Cell RNA

Sequencing Demonstrates Development

of a Spectrum of Cell Types in Kidney

Organoids

(A and B) Diagram ofMorizane (A) and Takasato (B)

human iPSC directed differentiation protocols.

(C–F) Immunofluorescence analysis of day 26 or-

ganoids for proximal tubules (lotus tetragonolobus

lectin [LTL]), distal tubules (ECAD), and podocytes

(WT1 and NPHS1) from the Morizane protocol

(C and D) and Takasato protocol (E and F). Scale

bars, 50 mm.

(G) tSNE projection of all day 26 organoid cells

according to protocol (Morizane or Takasato) and

cell line (induced PSCs [iPSCs] or ESCs).

(H) Unsupervised clustering of all organoid cells

reveals 23 separate clusters.

(I) Violin plot showing cluster-specific expression

of marker genes.

(J) Major kidney cell populations depicted after

semi-supervised analysis.

(K) Proportions of kidney and off-target cell types

according to protocol and cell source.
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kidney. Our analysis reveals new insights, including the

following: both protocols generate at least 12 separate kidney

cell types; off-target non-renal cell types are present in all kidney

organoids at similar ratios in human induced PSCs (iPSCs)

versus human embryonic stem cells (hESCs); lineage relation-

ships were revealed through pseudotemporal ordering during

kidney organoid differentiation; kidney organoid cell types are

immature when benchmarked against fetal and adult human sin-

gle-cell datasets; and brain derived neurotrophic factor (BDNF)

inhibition reduces off-target neuronal populations by 90%

without altering kidney differentiation. These datasets provide

a framework for evaluating and improving organoid differentia-

tion protocols using single-cell transcriptomics.

RESULTS

scRNA-seq Defines Cell Diversity in Kidney Organoids
We used the hESC line H9 and the iPSC line BJFF.6;, the latter

was created from newborn male foreskin fibroblasts and reprog-
2 Cell Stem Cell 23, 1–13, December 6, 2018
rammed with Sendai virus. We confirmed

that the BJFF.6 line could efficiently

generate kidney organoids using the pro-

tocol described by Takasato et al. (2015,

2016) and the protocol described by Mor-

izane and Bonventre (2017) and Morizane

et al. (2015) (Figures 1A and 1B; hereafter

referred to as the Takasato or Morizane

protocol, respectively). Each protocol

generated nephron-like structures that

closely resembled published reports (Fig-

ures 1C–1F).

Using DropSeq, we isolated and

sequenced mRNA from a total of 71,390

cells harvested fromday 26 organoids. Or-

ganoidswere generated using both hESCs

and iPSCs. The Takasato protocol gener-
ated larger organoids, so we sequenced one or two each from

separate batches. For the smaller Morizane protocol organoids,

we combined 12 organoids each from separate batches. We de-

tected�1,930 unique transcripts from�1,115 genes for each cell

(Table S1). After correcting for batch effects by matching mutual

nearest neighbors (Haghverdi et al., 2018), we reduced dimen-

sionality by running a principal-component analysis (PCA) on

themost highly variable genes, performedgraph-based clustering

on the significant principal components (PCs), and finally visual-

ized distinct cell sub-groups using t-distributed stochastic

neighbor embedding (tSNE). To examine protocol-dependent

effects as well as differences between hESC- and iPSC-derived

organoids, we projected cells according to protocol and cell

source. This revealed co-clustering of cells predominantly based

on the protocol used, with less difference attributable to hESC

or iPSC source (Figure 1G).

Unsupervised clustering of the entire pooled dataset identified

23 transcriptionally distinct populations present in organoids

generated from either the Morizane or the Takasato protocol



Figure 2. Comparison of Kidney Cell Types

and Differentiation State in iPSC-Derived

Kidney Organoids Generated with Both

Protocols

(A and B) Heatmap of all cells clustered by recur-

sive hierarchical clustering and Louvain-Jaccard

clustering (Seurat), showing selected marker

genes for every population of the Morizane proto-

col (A) and Takasato protocol (B). The bottom bars

indicate the batch of origin (Batch) and number of

unique molecular identifier (UMI) detected per cell

(Depth).

(C and D) tSNE plot of cells based on the expres-

sion of highly variable genes for the day 26 orga-

noids from theMorizane protocol (C) and Takasato

protocol (D). The detected clusters are indicated

by different colors.

(E) Heatmap indicating Pearson’s correlations on

the averaged profiles among common cell types

for Morizane and Takasato organoids.

(F) Dendrogram showing relationships among the

cell types in Morizane (left) and Takasato (right)

organoids. The dendrogram was computed using

hierarchical clustering with average linkage on

the normalized expression value of the highly var-

iable genes.

(G–M) qPCR comparing cell marker expression for

podocytes (NPHS1) (G), proximal tubule (PT)

(SLC3A1) (H), loop of henle (LOH) (SLC12A1) (I),

neurons (CRABP1 and MAP2) (J and K), and

muscle (MYLPF and MYOG) (L and M) between

organoid protocols. ***p < 0.001 and ****p <

0.0001. Error bars indicate ± SEM of fold change.

(N and O) Immunofluorescence analysis of neural

marker CRABP1 expression (green) in the Mor-

izane (N) and Takasato (O) protocols. Cells were

co-stained with PT (LTL, white) and podocyte

(NPHS1, red) markers. Scale bars, 50 mm.
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and derived from either hESCs or iPSCs (Figure 1H). We anno-

tated broad cluster classes by comparing unique transcript

expression with existing RNA-seq datasets and the literature.

In Figure 1I, violin plots show the expression of marker genes

across these clusters. There were four broad classes of cell

types in the pooled analysis: podocytes, mesenchyme, tubular

epithelia, and off-target cells (Figure 1J). The fractions of these

cell classes differed both according to protocol and according

to cell source. For example, podocytes made up 28.5% of

Morizane organoids derived from iPSCs but only 14.3% derived

from hESCs. Off-target cell types, by contrast, were similar, at

about 11% of both iPSC- or hESC-derived Morizane organoids,

whereas they represented about 21% of both iPSC or hESC

Takasato organoids (Figure 1K).

Variations in cell compositionbetweenhESC- and iPSC-derived

organoids complicated efforts to reveal subtle distinctions be-

tween cells from the two protocols. We therefore analyzed orga-

noids derived from iPSCs and hESCs separately to evaluate

differences between the two protocols. In iPSC-derived organo-
Ce
ids, we analyzed 29,922 single-cell

transcriptomes from two batches of

the Morizane (15,951 cells) or Takasato

(14,731 cells) organoids. To examine po-
tential batch effects and to quantify variability among organoids,

we projected cells fromdifferent batches of iPSC-derived organo-

ids onto the same tSNEdiagram,which showed that cells were in-

termixed regardless of batch (Figures S1A andS1B). Furthermore,

cluster-based correlation analysis on both protocols revealed that

the correlation for cells in the same cell cluster from different

batches was always greater than the correlation for cells in the

samebatch fromdifferent cell clusters (FiguresS1CandS1D).Pro-

portions of cell clusters from different batches were also similar

(FiguresS1EandS1F).Analternativeclusteringapproach, iterative

hierarchical clustering (Baron et al., 2016), identified the same

major organoid cell populations (Figures 2A and 2B).

Clustering of iPSC-derived organoids alone revealed a similar

variability in cell frequency between Morizane and Takasato

protocols, as observed in the global clustering analysis (Figures

2A and 2B). For example, Morizane organoids contained

more podocytes, which were marked by the expression of

PODXL andNPHS2 (Schwarz et al., 2001), whereas the Takasato

protocol produced more tubular epithelial cells based on the
ll Stem Cell 23, 1–13, December 6, 2018 3
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expression of EPCAM, SLC3A1, and WFDC2 (Figures 2A–2D;

Litvinov et al., 1994). Despite this variability, both protocols

generated very similar cell types because each pair of cell types

was highly correlated (Figure 2E). Additionally, dendrograms of

analogous cell types from both cell types revealed very similar

cell relationships (Figure 2F). We observed substantial numbers

of non-renal cell types in both protocols. Morizane organoids

contained three neuronal clusters and one muscle cluster.

Organoids generated using the Takasato protocol contained

four neuronal clusters and one cluster that we could not

annotate but that expressed some melanocyte markers such

as MLANA and PMEL (Kawakami et al., 1994). Similar findings

were observed from a separate clustering analysis of hESC-

derived organoids, except that muscle cells were common

off-target cells present in both protocols (Figures S1G–S1M).

We confirmed differences in relative abundance of both renal

and non-renal cell types by comparing marker gene expression

for podocytes (NPHS1) and loop of Henle cells (SLC12A1) as

well as muscle (MYLPF and MYOG) and neuronal (CRABP1

andMAP2) cells by qPCR (Figures 2G–2M). To localize neuronal

cells, we performed immunostaining for CRABP1, a gene ex-

pressed in neuronal clusters from both protocols. CRABP1

protein expression localized to spindly cells present in the inter-

stitium (Figures 2N and 2O). We could identify co-expression

of MAP2, a microtubule-associated protein expressed exclu-

sively in neurons (Dehmelt and Halpain, 2005), in many

CRABP1+ interstitial cells (Figure S2A), further supporting a

neuronal lineage. However, we could also detect coexpression

of MEIS1, a marker of kidney stroma (Chang-Panesso et al.,

2018), in some CRABP1+ cells (Figure S2B). Gene imputation

analysis showed CRABP1 expression to be present in a small

subset of mesenchymal cells from both protocols (Figures

S2C and S2D). Expression of CRABP1 and MAP2 was low at

earlier time points but rose substantially by day 26 (Figures

S2E–S2I). Re-analysis of the bulk RNA-seq data in Takasato

et al. (2015) confirmed the presence of many neuronal genes

identified by our analysis (Figure S2J), suggesting that some de-

gree of differentiation toward neural fates is a common outcome

of current organoid differentiation protocols. Because CRABP1

was recently identified as a marker of stromal progenitors in

embryonic day 14.5 (E14.5) kidney (Magella et al., 2018), we

tested whether CRABP1 expression might mark a stromal pro-

genitor cluster. The correlation between our neural clusters and

E14.5 mouse stroma was very poor, however, and very few of

the top 50 stromal progenitor genes were coexpressed in the

CRABP1 cluster (Figures S2K and S2L). These analyses confirm

the predominant neural identity of CRABP1-expressing cells in

the kidney organoid.

Cell-Cycle Analysis
During kidney development, progenitor cell populations are char-

acterized by rapid cell cycle progression that slows progressively

with differentiation (Short et al., 2014). We analyzed cell cycle sta-

tus as a proxy for the degree of differentiation (Kowalczyk et al.,

2015). We scored all cells from both protocols based on cell cycle

gene expression and assigned a cell cycle phase (G2M, S, or G1).

The total fraction of cells in G2M, S, or G1was similar between the

protocols and cell source, at 39.1% and 43.9% in the Morizane

and Takasato organoids derived from iPSC-derived organoids
4 Cell Stem Cell 23, 1–13, December 6, 2018
(Figures S3A and S3B) and 37.7% and 45.1% in hESC-derived

organoids, respectively (Figures S3C and S3D). However, in the

Morizane organoids, cells in G2Mwere limited to two cell clusters:

a mesenchymal and neuronal cluster. By contrast, in Takasato or-

ganoids, G2M-phase cells were present as a subset of 6 separate

clusters (two mesenchymal, two neuron-like, one unidentified,

and an epithelial cluster). Cell cycle gene expression was not

driving cluster identity. Both the Morizane M1 cluster and the Ta-

kasato Lp cluster expressed high levels of the cell cycle gene

MKI67 but showed divergent expression of COL3A1 (M1) and

POU3F3 (Lp) (Figure S3F).

We interpreted the broader proliferative distribution of the

Takasato organoid to potentially reflect that the organoid had

been harvested before it was fully differentiated. Indeed, cell

cycle analysis of cells collected at different time points using

the Takasato protocol revealed that the proportion of cycling

cells decreased along the kidney organoid differentiation pro-

cess (Figure S3E), suggesting that the degree of cell differentia-

tion or cell type maturity might be negatively correlated with the

proliferative capacity.

Kidney Organoid Cell Subsets
Re-clustering of tubular cells identified additional cell clusters in

both protocols. We detected 8 and 5 tubular subtypes in Mori-

zane and Takasato organoids, respectively (Figures 3A–3D).

This includes a subpopulation that expressed the ureteric bud

marker GATA3 (Labastie et al., 1995) in both protocols. Prior re-

ports have suggested that kidney organoids contain derivatives

of both major progenitor populations, the metanephric mesen-

chyme and the ureteric bud (Takasato et al., 2015). However,

several lines of evidence suggest that the GATA3 cluster is actu-

ally a metanephric mesenchyme-derived distal tubule. First, the

GATA3 cell cluster did not express mature collecting duct

markers (e.g., AQP2 or AQP4), although this could also be ex-

plained by immaturity. Second, in addition to principal cells,

GATA3 is also expressed in the distal convoluted tubule and con-

necting segment in both human and mouse kidney (Figures S4A

and S4B). Third, the Morizane organoid GATA3 cluster also ex-

pressed calbindin, a marker of distal tubules (Bindels et al.,

1991). We verified that, in post-natal day 1 (P1) mouse kidney

scRNA-seq, calbindin mRNA is expressed in the distal tubule

and the ureteric bud tip, whereas, in our adult kidney snRNA-

seq data, calbindin mRNA was exclusively expressed in the

distal convoluted tubule and the connecting segment but not in

principal cells (Figures S4A and S4B). Finally, comparison of

the GATA3 cluster with adult kidney cell types shows that it is

equally or more similar to the distal tubule and connecting

segment than to principal cells by Pearson’s correlation (Fig-

ure 4C). These findings raise significant doubts that the ureteric

bud and its derivatives are generated using either the Morizane

or the Takasato protocol.

We next compared a panel of developmental and differentia-

tion genes in podocyte, proximal tubule, and loop of Henle cell

clusters across protocols. This revealed higher expression of

the kidney developmental markers CDH6, EMX2, and SOX4 in

Takasato podocytes (Brunskill et al., 2008). Morizane podocytes

had somewhat higher expression of podocyte differentiation

markers and lower expression of proliferation markers (Fig-

ure 3E). For the proximal tubule, both Morizane and Takasato



Figure 3. Human Kidney Organoids Contain

Subclasses of Tubular Epithelial Cells

(A and B) Heatmap showing selected marker

genes for every tubular subpopulation of the

Morizane protocol (A) and Takasato protocol (B)

generated from iPSCs.

(C and D) tSNE plot of tubular subclusters in kidney

organoids from the Morizane protocol (C) and

Takasato protocol (D). The detected clusters are

indicated by different colors.

(E–G) Dotplot comparing the expression of cell

type signature and developmental or proliferating

genes on podocytes (E), proximal tubules (F), and

LOH (G) between the two protocols.
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organoids had similar expression of differentiation markers, but

the Takasato proximal tubule had higher expression of develop-

mental markers. The Morizane proximal tubule had higher

expression of genes that were difficult to interpret, including

the metal-binding genes MT1M and MT1H (Figure 3F). The

loop of Henle was more differentiated in Morizane organoids

(Figure 3G).

Quantifying Organoid Kidney Cell Maturity
A critical question is the degree to which kidney organoid cell

types resemble their native counterparts in molecular terms.

We addressed this question in three ways. First, we compared

organoid cell type gene signatures with a recent mouse P1

scRNA-seq dataset (Adam et al., 2017). Again, there was no

clear ureteric bud or collecting duct population identified in the

organoid datasets (Figures S4C and S4D). For both organoid

protocols, theM1mesenchymal clusters showedmedium corre-

lation to cap mesenchyme in addition to stroma. Notably, none
Ce
of the off-target clusters (neural, muscle,

and melanocyte-like) correlated to cell

types found in P1 kidney.

We also compared organoid cell clus-

ters with a recently generated single-cell

dataset generated from human week

16 kidney (Lindström et al., 2018b). This

analysis revealed excellent correlation of

organoid kidney cell types to fetal kidney

cell types, either by Pearson’s correlation

or using amulticlass random forest classi-

fier (Habib et al., 2017; Figures S4E–S4I).

Notably, the off-target cell clusters did

not map to any human fetal kidney cell

types, with the sole exception of the Taka-

sato N1 cluster, which showed some

correlation to a fetal kidney cluster anno-

tated as cycling. N1 also expresses a

strong cell cycle gene signature, likely

explaining the correlation (Figure S4H).

Finally, we compared kidney organoid

cell types with their adult human coun-

terparts. Attempts of scRNA-seq failed;

however, we were successful in gener-

ating adult human kidney snRNA-seq

data from a 62-year-old white male
with a serum creatinine level of 1.03 mg/dL using the 10X

Chromium platform. We sequenced 4,524 nuclei to a similar

depth (Table S1) as the organoid datasets and identified 12

distinct epithelial cell clusters, including podocytes, proximal

tubule cells (S1–S3), loop of Henle cells (descending and

ascending), distal tubule cells, connecting segment cells, prin-

cipal cells, and intercalated cells (type A and type B) (Figures

4A and 4B). The absence of stromal or leukocyte populations

most likely reflects either dissociation bias and/or a cell fre-

quency below our limit of detection (Wu et al., 2018).

scRNA-seq measures transcripts from both cytoplasm and

nucleus whereas single nucleus RNA-seqmeasures only nuclear

transcripts. Nuclei contain only a fraction of total cell RNA, and

although nuclear and cytoplasmic mRNAs correlate highly (Bar-

thelson et al., 2007), some protein-coding mRNAs are retained in

the nucleus (Bahar Halpern et al., 2015). Despite these differ-

ences, single-cell and snRNA-seq datasets predict cell types

comparably and with high concordance (Habib et al., 2017;
ll Stem Cell 23, 1–13, December 6, 2018 5



Figure 4. Organoid Cell Types Are Immature

Compared with Benchmarked Adult Kidney

Cell Types

(A) Unsupervised clustering of single-nucleus

RNA sequencing (snRNA-seq) of adult human

kidney identified 17 distinct cell types in human

adult kidney. That includes 11 tubular cell types,

podocytes, mesangium, endothelial cells, and

macrophages.

(B) Heatmap showing uniquely expressed genes

for each cluster.

(C) Pearson correlation analysis comparing the

organoid cell types and their endogenous coun-

terparts in human kidney. The color bar indicates

the correlation score.

(D) Reclustering of podocytes, proximal tubule (S1

and S2), and loop of Henle cells derived from both

organoids and adult kidney, analyzed using

canonical component analysis.

(E) Cellular origins (Morizane, Takasato, or adult

kidney) visualized in the tSNE reveal poor overlap

between organoid-derived and adult-derived cells

within each cluster.

(F) Comparison of the average expression of

marker genes and developmental genes between

organoid cell types and adult kidney cell types.

Expression value was scaled by Z score.

(G) Expression of the developmental factors OSR1

and POU3F3 is strong in organoids but almost

undetectable in adult kidney. Expression of the

S1 marker SLC5A12 and loop of Henle marker

UMOD is strong in adult kidney and undetectable

in organoids.
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Lake et al., 2017). Therefore, we next correlated all kidney orga-

noid epithelial cell types with their corresponding endogenous

counterparts from human adult kidney. We observed an ex-

pected correlation between corresponding cell types of orga-

noid and human kidney (Figure 4C). Organoid loop of Henle

correlated with adult loop of Henle but also distal tubule and

collecting duct, likely reflecting their developmental immaturity.

Although organoid and adult kidney epithelial cell types corre-

lated well, our prior analysis suggested that organoid-derived

cells expressed developmental markers. To visualize overall

similarities and differences in cellular transcriptomes from spe-

cific organoid and adult cell types, we performed unsupervised

clustering of podocytes, proximal tubule, and loop of Henle clus-

ters from both organoids and adult kidney after batch effects

were corrected by canonical correlation analysis (Butler et al.,

2018) and projected the data by tSNE (Figure 4D). As expected,

the analysis revealed three separate clusters. Whenwe then pro-

jected cellular origin onto the tSNE, however, there was relatively

poor overlap between the organoid-derived versus adult kidney
6 Cell Stem Cell 23, 1–13, December 6, 2018
cells within each cluster (Figure 4E).

Further emphasizing the transcriptional

differences between organoid-derived

cells and adult kidney, expression of dif-

ferentiation markers was much higher in

adult cell types, whereas developmental

marker expression was much higher in

organoid cell types (Figure 4F). For some
of these developmental markers (OSR1 and POU3F3), expres-

sion was high in many organoid cell types in the pooled dataset

but undetectable in adult kidney. In the same way, some differ-

entiation markers (SLC5A12 and UMOD) were strongly ex-

pressed in adult clusters but undetectable in organoids (Fig-

ure 4G). These results indicate that organoid cell types are

substantially immature compared with their adult counterparts.

We identified 123 receptors and 97 cognate ligands and map-

ped their expression to specific adult human kidney cells. Most

of these mapped to a single predominant cell type (Figures

S5A and S5B). This allowed for development of a simple connec-

tomemodel for howmature kidney cellsmight intercommunicate

during homeostasis (Figure S5C). Current protocols incubate

organoids without any growth factors after 12–14 days, but the

expression of so many ligands in mature kidney suggests a

possible need to include soluble factors during the maintenance

phase of organoid maturation.

Because transcription factors regulate cell state, we next

tested the hypothesis that organoid cell immaturity might reflect
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partial expression of the gene-regulatory network present in

mature kidney cells. We identified 54 transcription factors pre-

sent in adult human proximal tubules, over half of which have

not been reported previously (Table S2). For example, high

mobility group nucleosome-binding domain-containing protein

3 (HMGN3) is a thyroid hormone binding receptor that regulates

gene expression and is strongly expressed in proximal tubules,

and thyroid hormone is known to regulate renal fluid and electro-

lyte handling, suggesting that HMGN3 may mediate thyroid

hormone actions in the proximal tubule (Michael et al., 1972).

In human adult podocytes, we identified 38 transcription factors,

25 of which we believe have not been reported previously. We

validated the expression of six of these transcription factors at

the protein level (Figures S5D–S5I). Many of the proximal tubule

transcription factors are expressed solely in proximal tubules,

whereas podocyte transcription factors are more widely ex-

pressed across kidney cell types (Mendeley, https://doi.org/10.

17632/m4rfg9wb29.1).

Both proximal tubule cells and podocytes derived from orga-

noids expressed only a fraction of the transcription factors we

identified in the adult cell types. For example, Takasato protocol

proximal tubules expressed 11 of 54 adult proximal tubule

transcription factors and Morizane proximal tubules only 9 of

54 (Table S2). Similarly, both Takasato and Morizane protocol

podocytes expressed 7 of 38 adult podocyte transcription

factors (Table S3). This result suggests that organoid cells,

despite expressing some markers of differentiated cells, are

fundamentally different from their terminally differentiated adult

counterparts. Collectively, these results identify lineage-specific

expression of genes that likely regulate cell specification, differ-

entiation, and proliferation during kidney organoid maturation.

Disease-Related Genes Predicted by GWASs Are
Expressed in Single Cell Types in Adult and Organoid
Kidney
Human kidney organoids are already being used tomodel mono-

genic human kidney diseases. However, there are many more

complex trait disease genes that have been identified by

genome-wide association studies (GWASs). Recently, Park

et al. (2018) reported that many human monogenic and complex

trait genes are expressed predominantly in a single mouse kid-

ney cell type. To gauge how useful kidney organoids might be

for modeling disease-relevant genes, we next compared our

ability to detect gene expression of GWAS hits in adult kidney

versus organoids. We used established GWAS gene lists

including 117 genes for chronic kidney diseases, 275 genes for

hypertension, and 777 genes for plasma metabolite levels.

We couldmap expression of 207 of these genes to cell types in

our adult kidney snRNA-seq dataset (Figures 5A–5C). Of these

207 mapped genes, we could only detect expression of 40 of

them (19%) in the correct corresponding organoid cell types

(Figures 5D–5F). In most cases, we confirmed that these

GWAS genes are expressed in only a single kidney cell type (Fig-

ure 5). Unexpectedly, podocytes and mesangial cells expressed

a substantial number of hypertension genes. These glomerular

cell types are not widely believed to play important roles in regu-

lating blood pressure. Consistent with their central role in secre-

tion and reabsorption, proximal tubules had the highest number

of genes associated with plasma metabolite levels.
As a complementary approach, we used RolyPoly, a regres-

sion-based polygenic model that allows prioritization of trait-

relevant cell types by combining GWAS and single-cell expres-

sion datasets (Calderon et al., 2017). We focused on CKD and

estimated glomerular filtration rate (eGFR) GWAS hits and asked

whether trait-relevant cell types identified using the adult kidney

dataset were similar to those identified using the organoid data-

sets. For CKD, RolyPoly identified principal cells, type A interca-

lated cells, podocytes, and proximal tubules as trait-relevant cell

types. By contrast, only distal tubules (which might also repre-

sent principal cells) were identified using Morizane data and

only podocytes using Takasato organoids. Similarly, for eGFR,

trait-relevant cell types using adult kidney data included prox-

imal tubules, podocytes, ascending loop of Henle cells, and

principal cells. The Morizane dataset identified proximal tubules,

and the Takasato dataset failed to identify any trait-relevant cell

types (Figures S5J–S5O).

These results confirm and extend those of Park et al. (2018),

which was performed in mouse and not human cells, but also

suggest that kidney organoids are limited in their ability to predict

trait-relevant cell types in comparison with adult kidney because

many GWAS hits are not expressed in organoid cell types.

Lineage Reconstruction during Kidney Differentiation
To explore lineage relationships and the mechanisms of cell

fate decisions during kidney organoid differentiation, we per-

formed scRNA-seq at separate time points during differentia-

tion using the Takasato protocol (days 0, 7, 12, 19, and 26).

A total of 9,190 cells from all five time points were projected

by tSNE, and on days 0, 7, and 12, each formed single distinct

clusters (Figure 6A). Pluripotency gene expression (e.g.,

POU5F1 or OCT4) was completely downregulated by day 7,

with upregulation of metanephric mesenchyme markers

(SALL1, FGF18, and HOXB9; Figure 6B; Brunskill et al.,

2008). The day 12 cluster most closely resembled the pretubu-

lar aggregate, with genes such as JAG1 and LHX1 strongly en-

riched at this time point. Multiple clusters corresponding to

differentiating cell types were present on days 19 and 26,

and most later clusters contained cells from both time points,

reflecting asynchronous differentiation.

We compared our results with the bulk RNA-seq data from

Takasato et al. (2015) by deconvolving cell frequency across

time using a bulk sequence single-cell deconvolution analysis

pipeline (Baron et al., 2016). This confirmed downregulation of

the pretubular aggregate and posterior intermediate mesoderm

and increasing fractions of differentiated cell populations with

time (Figures S6A–S6H). Although differentiation marker expres-

sion generally increased with time in our dataset, and certain

progenitor markers such as CITED1 decreased over time (Fig-

ure 6C), many genesmarking developmental cell types persisted

on day 26. Genes reflecting the renal vesicle (DKK1) and

S-shaped body (JAG1, CCND1, CDH6, and LHX1) continued

to be expressed, for example, suggesting an ongoing nephro-

genic program (Figures 3E–3G; Brunskill et al., 2008). Future

enhancements to kidney organoid differentiation protocols will

need to push maturation of these developmental states toward

fully mature kidney cell types.

To detect gene expression changes during organoid differ-

entiation, we reconstructed kidney lineage relationships by
Cell Stem Cell 23, 1–13, December 6, 2018 7
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Figure 5. Cell-Specific Expression of Dis-

ease-Relevant Genes in Adult Kidney

Compared with Organoids.

(A–C) Cell-specific expression of genes reported in

plasma metabolite level-related GWAS (A), hyper-

tension-related GWAS (B), and CKD-related

GWAS (C) in adult kidney. Each gene reported in a

kidney disease-related GWAS was assigned to the

adult kidney cell type in which it was found to

be differentially expressed (likelihood ratio test).

A heatmap was used to visualize the Z score-

normalized average gene expression of the

candidate genes for each cell cluster.

(D–F) Disease-relevant genes identified in (A)–(C)

for which cell-specific expression could also be

detected in organoid cell types. (D) Plasma

metabolite levels-related GWAS. (E) Hypertension-

related GWAS. (F) CKD-related GWAS. Results

from both protocols and both cell sources were

pooled for the analysis.
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performing pseudotemporal ordering using Monocle2 (Qiu

et al., 2017). The resulting cell trajectories revealed one major

branchpoint, separating loop of Henle and proximal tubule

cell fates from podocyte, stromal, and neural cell fates (Fig-

ure 6E). A second branchpoint distinguished podocyte from

stromal and neural fates. Cell fates were defined by projecting

marker gene expression onto the pseudotime trajectories

(Figure 6F).

Lineage-Specific Expression of Transcription Factors,
Receptors, and Ligands during Organoid Differentiation
Although many steps in murine nephrogenesis are well charac-

terized, the transcriptional pathways underlying human kidney

development are less well characterized. To identify candidate
8 Cell Stem Cell 23, 1–13, December 6, 2018
transcription factors and signaling path-

ways whose modulation might improve

kidney cell maturation and eliminate off-

target cell types, we performed branched

expression analysis modeling (BEAM).

We identified a large number (56) of

dynamically expressed transcription fac-

tors over the course of differentiation (Fig-

ure S6I). The analysis assigned expres-

sion of these genes to either of the

main branches, but it could not resolve

single-cell cluster expression. We there-

fore mapped expression of these tran-

scription factors to all 12 major clusters

(Figure S6J). Most genes were expressed

in only one or a few cell types. We

identified five genes (POU2F2, POU3F2,

NHLH2, HES6, and LHX9) whose expres-

sion was limited to a neuronal cluster and

confirmed that their expression corre-

sponded to the neuronal branch by pseu-

dotemporal ordering (Figure S6K). A sub-

set of these transcription factors (TFs) has

previously been implicated in neuronal
development. For example, loss of LHX9 prevents formation of

the neocortex (Bulchand et al., 2001). Similarly, POU3F2 is

required for survival of hypothalamic neural progenitors (Nakai

et al., 1995). Thus, the induction of these TFs may be critical

for one or more of the neuronal lineages present in kidney orga-

noids. For finer mapping of gene expression changes during fate

decisions, we performed BEAM on the podocyte and mesen-

chyme-neuron and on the mesenchyme and neuron branch

(Mendeley, https://doi.org/10.17632/m4rfg9wb29.1). This anal-

ysis included all differentially expressed genes as well as tran-

scription factors alone.

To test whether longer organoid incubation times might

improve the cell differentiation status, we grew organoids

from the Takasato protocol out to 34 days and performed

https://doi.org/10.17632/m4rfg9wb29.1


Figure 6. Time Course Analysis of Cells dur-

ing Organoid Differentiation Reveals Line-

age Relationships

(A and B) Projecting cells across time points to the

tSNE. Cells were colored by the time point where

they were collected (A) or gene expression of

stage-specific markers (B).

(C) Validation of the stage-specific marker by

qPCR. **p < 0.01 and ****p < 0.001 versus day 7.

Error bars indicate ± SEM of fold change.

(D) Annotation of cell clusters based on gene

expression of cell-type-specific markers.

(E and F) Ordering of single-cell RNA sequencing

(scRNA-seq) expression data according to the

pseudotemporal position along the lineage (E) re-

vealed a continuum of gene expression changes

from iPSCs to differentiated cell types (F).
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scRNA-seq on a total of 6,115 cells (Table S1). We compared

the expression of differentiation markers across clusters and

discovered that differentiation was generally worse, not better,

at this later time point, with loss of endothelial cells, reduced

expression of differentiation markers across most clusters,

and the emergence of an off-target muscle cell cluster (Fig-

ure S7A). We next pooled the day 34 scRNA-seq results with

our day 26 results, removed batch effects by matching nearest

neighbors (Haghverdi et al., 2018), and reclustered. Although

there was overlap with kidney cell clusters, the muscle cluster

was unrelated to any day 26 cluster (Figures S7B and S7C).

Furthermore, we could detect a separate new cluster, also

specific only to day 34, that expressed a high percentage of

mitochondrial genes, indicating that these were unhealthy cells

(Figure S7D). Overall, there was a reduction in the fraction of

mature kidney cell types (for example, mature stroma and prox-

imal tubule) and a substantial increase in off-target cell types on

day 34 compared with day 26 (Figure S7E).

Because organoid differentiation is accomplished by exposure

of iPSCs to sequential combinations of extrinsic factors, we also

searched for ligand and receptor pairs whose expression
Ce
changed in a lineage-specific fashion dur-

ing organoid differentiation. We identified

19 receptors with 24 cognate ligands in

this way and mapped their expression to

the major organoid cell types (Figure 7A).

NTRK2, which encodes neurotrophic

tyrosine kinase receptor, type 2, was

expressed exclusively in neural clusters

N1 and N3. Its ligand, BDNF, was also

strongly induced in the podocyte-neuron-

stroma branch.

Inhibition of BDNF-NTRK2 Signaling
Reduces Off-Target Cells
Because BDNF promotes neuron survival,

growth, and differentiation (Huang and

Reichardt, 2001), we reasoned that inhibi-

tion of signaling by its receptor might

reduce off-target neuron populations in

kidney organoids. To test this hypothesis,
we first selected a dose of the NTRK2 inhibitor K252a (Tapley

et al., 1992) that did not alter the gross tubular morphology (Fig-

ure S7F). We administered 250 nM K252a beginning on day 12 of

the Takasato protocol (Figure 7B). Preliminary qPCR data sug-

gested a reduction in off-target marker expression (Figures S7G

and S7H). We therefore performed scRNA-seq on K252a-treated

organoids, which revealed a 90% reduction in neuronal cells,

from 20%–22% to 2.1%. There was also a decrease in mesen-

chymal cells from 39.8% to 15.9%, consistent with pseudotem-

poral ordering that placed neurons and kidney mesenchyme in

the same branch. We observed an increase in tubular cells from

35.2% to 70.4%, accompanied by an increase in podocytes

from 4.2% to 11.5% (Figures 7C and 7D). All kidney lineages ex-

pressed the expected marker genes (Figure 7E). The reduction in

neuronal cells was confirmed by immunofluorescence analysis of

an independent batch (Figure 7F).

DISCUSSION

Human kidney and kidney organoids are composed of a wide

array of cell types, all required for proper development and organ
ll Stem Cell 23, 1–13, December 6, 2018 9



Figure 7. Reduction in Off-Target Cell Dif-

ferentiation by Analysis of Cell-Specific

Expression of Receptors and Ligands dur-

ing Organoid Differentiation

(A) Heatmap showing the kinetics of branch-

dependent ligand expression identified by BEAM

(Monocle2) and corresponding cell-specific re-

ceptor expression in day 26 organoids from the

Takasato protocol. The analysis identified that

BDNF expression was induced in the podocyte-

mesenchyme-neuron branch, and its receptor

NTRK2 was exclusively expressed in neurons.

(B) Inhibition of the BDNF pathway using K252a

(250 nM from days 12 to 26).

(C) tSNE of K252a-treated organoids showing a

very small neuronal population.

(D) Off-target cells made up only 2.1% of the total

cells in K252a-treated organoids.

(E) Violin plot showing marker gene expression

across clusters in K252a-treated organoids.

(F) Verification of the strong reduction in neuronal

cells by immunofluorescence staining of an inde-

pendent organoid batch.
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function. Recent studies have begun to characterize these cell

types using scRNA-seq, revealing important new insights

(Adam et al., 2017; Chen et al., 2017; Czerniecki et al., 2018;

Der et al., 2017; Lindstrom et al., 2018a; Magella et al., 2018;

Park et al., 2018). Fulfillment of the promise of human kidney or-

ganoids requires comprehensive characterization of their cell

composition, comparison of differing protocols, and a better

understanding of the degree to which they produce mature,

differentiated kidney cell types. Using scRNA-seq, we estab-

lished that current protocols generate a remarkable diversity of

kidney cell types. We also provide the first direct comparison

of separate differentiation protocols, revealing broadly similar

outcomes but important differences in cell ratio and differentia-
10 Cell Stem Cell 23, 1–13, December 6, 2018
tion state. The information provided in

this comprehensive dataset will guide

future attempts to improve differentiation

protocols.

These results will help guide protocol

choice for investigators interested in

modeling kidney function or disease.

Based on increased expression of podo-

cytes with the Morizane protocol, it is

better suited for analysis of glomerular

biology. Similarly, the Takasato protocol

generated more tubular epithelium and is

better suited for studying the tubulointer-

stitium. Unexpectedly, our analysis sug-

gests the apparent absence of ureteric

bud-derived cell types. The ureteric bud

undergoes branching morphogenesis to

form the collecting system and is required

for the formation of an interconnected col-

lecting duct (Costantini and Kopan, 2010).

In a recent study, Taguchi and Nishinaka-

mura (2017) induced mouse metanephric

mesenchyme and ureteric bud progeni-
tors separately, and their recombination led to organoids with

much more complex and interconnected collecting duct archi-

tecture than reported previously. Similar protocols for human

PSC-derived kidney organoids have not yet been established.

Our results suggest that establishing conditions that will support

growth of the ureteric bud lineage in human kidney organoids is

an immediate priority.

One measure of the usefulness of kidney organoids for

modeling disease is the degree to which organoid cells express

disease-relevant genes. We found that organoid cells expressed

about 20% of trait-relevant genes defined by GWAS compared

with their adult counterparts. Similarly, we could only detect

about 20% of the transcription factors present in adult proximal
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tubule and podocytes compared with organoid equivalents.

Consistent with these observations, a global comparison of or-

ganoid-derived cell types with human fetal and adult counter-

parts revealed that, although organoid-derived cells express

some markers of terminal differentiation, they are all immature.

Unexpectedly, longer organoid incubation did not improve dif-

ferentiation but, rather, caused reduced expression of terminal

markers and generated new off-target cells, suggesting kidney

cell type dedifferentiation with time, consistent with a recent

report (Przepiorski et al., 2018). These results indicate a need

to identify conditions that will better support continued organoid

maturation.

Off-target cell populations, primarily neurons, were present in

kidney organoids generated from both protocols. By combining

pseudotemporal ordering with lineage-specific expression of

transcription factors, ligands, and receptors, our analysis pro-

vides a roadmap to understand lineage relationships and

signaling during differentiation as well as a framework around

which to test improvements to the differentiation protocol. The

expression of BDNF and its receptor NTRK2 in neural clusters

suggested a strategy to reduce these cell types by inhibiting

BDNF-NTRK2 signaling. That this strategy reduced off-target

cell types by 90%suggests that similar analyses could be applied

broadly in the organoid field to reduce unwanted cell types.

We envision that analysis of signaling pathways and transcrip-

tion factors expressed before and after branchpoints will sug-

gest other potential strategies to regulate organoid cell fates.

Future studies are necessary to determine how modulation of

the gene expression patterns revealed here can be used to

improve organoid maturation and, ultimately, better model phys-

iological function.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-WT1 Santa Cruz Cat#SC-7385; RRID: AB_628448

Rat anti-ECAD Abcam Cat#ab11512; RRID: AB_298118

Biotinylated LTL Vector Labs Cat#B-1325; RRID: AB_2336558

Sheep anti-NPHS1 R&D Systems Cat#AF4269; RRID: AB_2154851

Rabbit anti-CRABP1 Cell Signaling Cat#13163

Chicken anti-MAP2 Abcam Cat#ab5392; RRID: AB_2138153

Mouse anti MEIS1 Active Motif Cat#39795

Secondary antibodies included FITC-,

Cy3, or Cy5-conjugated

Jackson ImmunoResearch Cat#711-095-152, Cat#712-095-153, Cat#715-165-151,

Cat#713-165-147, Cat#016-600-084, Cat#703-165-155

DAPI (40,60- diamidino-2-phenylindole) Thermo Fisher Scientific Cat#D1306

Chemicals, Peptides, and Recombinant Proteins

Barcoded Dropseq beads ChemGenes Cat#MACOSKO-2011-10

10mM Tris-HCl, pH 8.0 Teknova Cat#T1173

UltraPure SSC Invitrogen Cat#15557036

Ficoll PM-400 GE Healthcare/Fisher

Scientific

Cat#45-001-745

Sarkosyl Sigma-Aldrich Cat#L7414-50mL

Exonuclease I New England Biolabs Cat#M0293L

Perfluoro-1-octanol Sigma-Aldrich Cat#370533-25G

dNTP mix Clontech Cat#639125

Droplet Generation Oil BioRad Cat#186-4006

Tris-EDTA buffer, pH 8.0 Sigma-Aldrich Cat#93283

1M DTT Teknova Cat#D9750

2M Tris pH 7.5 Sigma-Aldrich Cat#T2944

Tween 20, RNase Free Promega Cat#H5152

NxGen RNase Inhibitor Lucigen Cat#30281-2

Nuclei EZ Lysis Buffer Sigma-Aldrich Cat#N-3408

RNasin Plus Ribonuclease Inhibitors Promega Cat#N2615

SUPERaseIN RNase Inhibitor Thermo Fisher Scientific Cat#AM2696

cOmplete ULTRA Tablets, Mini, EDTA-free,

EASYpack

Roche Cat#05 892 791 001

CHIR Tocris Bioscience Cat#4423

APEL 2 STEMCELL Technologies Cat#05275

Protein Free Hybridoma Medium II GIBCO Cat#12040077

Advanced RPMI 1640 medium GIBCO Cat#12633012

FGF9 R&D Systems Cat#273-F9-025/CF

Heparin Sigma-Aldrich Cat#H4784-250MG

Trypsin-EDTA Sigma-Aldrich Cat#25200-114

Noggin PeproTech Cat#120-10C

GlutaMAX Thermo Fisher Scientific Cat#35050061

Activin R&D Systems Cat#338-AC-010

Accutase STEMCELL Technologies Cat#7920

TrypLE Select Thermo Fisher Scientific Cat#12563-029

ReLeSR STEMCELL Technologies Cat#05872

BDNF inhibitor (K252a) Sigma-Aldrich Cat#K1639

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Prolong Gold Life Technologies Cat#P36930

Essential 8 Medium GIBCO Cat#A2858501

Matrigel hESC-Qualified Matrix Corning Cat#354277

Antibiotic-Antimycotic Solution Corning Cat#30004CI

Critical Commercial Assays

Maxima H Minus Reverse Transcriptase ThermoFisher Cat#EP0753

KAPA HiFi hotstart readymix KAPA Biosystems Cat#KK2602

Single Cell 30 Library and Gel Bead Kit V2 10x Genomics Cat#120237

Chromium single cell chip kit V2 10x Genomics Cat#120236

Nextera XT DNA Sample Preparation Kit Illumina Cat#FC-131-1096

Agilent High Sensitivity DNA Kit Agilent Cat#5067-4626

Agencourt AMPure XP - PCR Purification Backman Coulter Cat#A63881

Deposited Data

Raw and analyzed data This paper GEO: GSE118184

Mendeley Data This paper https://doi.org/10.17632/m4rfg9wb29.1

Experimental Models: Cell Lines

Human iPSCs: BJFF.6 line GEiC N/A

Human ESCs: H9 line GEiC N/A

Software and Algorithms

Drop-seq_tools v1.12 (Macosko et al., 2015) http://mccarrolllab.org/dropseq

STAR v2.5.3a (Dobin et al., 2013) https://github.com/alexdobin/STAR

R 3.4.1 R project https://www.r-project.org

Seurat v2.0 (Butler et al., 2018) https://satijalab.org/seurat/

Monocle2 (Qiu et al., 2017) https://github.com/cole-trapnell-lab/monocle-release

zUMIs (Parekh et al., 2018) https://github.com/sdparekh/zUMIs

Random Forest CRAN-R https://cran.r-project.org/web/packages/randomForest/

index.html

SINCERA (Guo et al., 2015) https://github.com/xu-lab/SINCERA

BSeq-sc (Baron et al., 2016) https://github.com/shenorrLab/bseqsc

MNN (Haghverdi et al., 2018) https://github.com/MarioniLab/MNN2017/

rolypoly (Calderon et al., 2017) https://github.com/dcalderon/rolypoly

Cytoscape 3.6.1 (Shannon et al., 2003) https://www.cytoscape.org/

Connectome (Ramilowski et al., 2015) https://github.com/Hypercubed/connectome

MAGIC (van Dijk et al., 2018) https://github.com/KrishnaswamyLab/MAGIC

Other

Nuclei isolation protocol This study STAR Methods

Morizane organoid differentiation protocol (Morizane et al., 2015) N/A

Takasato organoid differentiation protocol (Takasato et al., 2015) N/A

Dropseq library preparation protocol McCarroll’s lab http://mccarrolllab.org/dropseq/

10x library preparation protocol 10x genomics https://support.10xgenomics.com/single-cell-gene-

expression/library-prep/doc/user-guide-chromium-

single-cell-3-reagent-kits-user-guide-v2-chemistry

Hemocytometer INCYTO Cat#DHC-F015

pluriStrainer 40 mm pluriSelect Cat#43-50040

pluriStrainer 20 mm pluriSelect Cat#43-50020

KONTES Dounce Tissue Grinders Kimble Chase Cat#KT885300-0002

Transwell polyester membrane cell culture inserts Corning Cat#3460

96 Well, Clear Round Bottom, Ultra Low Corning Cat# 7007

Syringe pumps KD Scientific Legato 100

(Continued on next page)
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Magnetic mixing system VP Scientific Part #710D2

PDMS Microfluidic Device FlowJEM N/A

Mouse E14.5 kidney data (Magella et al., 2018) GEO: GSE104396

Mouse P1 kidney data (Adam et al., 2017) GEO: GSE94333

Human fetal kidney data (Lindström et al., 2018b) GEO: GSE102596

Organoid bulk RNA-seq data (Takasato et al., 2015) GEO: GSE70101
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Benjamin

D. Humphreys (humphreysbd@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

iPSC Culture
All experiments utilized the BJFF6 human iPSC line reprogrammed by Sendai virus from human foreskin fibroblasts (Washington

University Genome Engineering and iPSC Core). This line is confirmed to be karyotypically normal. BJFF6 cells were maintained

in 6-well plates coated with matrigel (Corning) in Essential 8 medium (Thermo Fisher Scientific). iPSC cells were dissociated using

ReLeSR (STEMCELL Technologies), confirmed to be mycoplasma free and maintained below passage 50.

Kidney donor
Institutional review board approval for research use of human tissue was obtained from Washington University. Renal cortex from a

nephrectomy kidney was obtained and donor anonymity preserved. The donor was a 62 year-old white male with a serum creatinine

of 1.03 mg/dL and BUN of 12 mg/dL.

METHOD DETAILS

Kidney Organoid Differentiation
Kidney organoids were generated following either the protocol described by Takasato et al. (2016) or that of Morizane (Morizane and

Bonventre, 2017) with minimal modifications. Briefly, for the Takasato approach, BJFF cells were treated with CHIR (8 uM, Tocris

Bioscience) in basal medium - APEL 2 (STEMCELL Technologies) supplemented with 5% Protein Free Hybridoma Medium II

(PFHMII, GIBCO) - for 4 days, followed by FGF9 (200 ng/mL, R&D Systems) and heparin (1 ug/mL, Sigma-Aldrich) for another

3 days. At day 7, cells were collected and dissociated into single cells using 0.25% Trypsin-EDTA (Thermo Fisher Scientific). Cells

were spun down at 400 g for 3 min to form a pellet and transferred onto a trans-well membrane. Pellets were incubated with

CHIR (5 uM) for 1 hour and then cultured with FGF9 (200 ng/mL) and heparin (1 ug/mL) for 5 days. For the next 13 days, organoids

were cultured with basal medium changed every other day. For the Morizane approach, BJFF cells were treated with CHIR (10 uM)

and Noggin (5 ng/mL, PeproTech) in basal medium - Advanced RPMI 1640 medium (GIBCO) supplemented with 1X L-GlutaMAX

(Thermo Fisher Scientific) - for 4 days, followed by 3 days Activin (10 ng/mL, R&D Systems) and 2 days FGF9 (10 ng/mL) treatment.

At day 9, the cells were dissociated with Accutase (StemCell technologies) and resuspended in the basic differentiation mediumwith

CHIR (3 mM) and FGF9 (10 ng/mL), and placed in ultra-low attachment 96-well plates. Two days later the medium was changed to

basal medium containing FGF9 (10 ng/mL) and cultured for 3more days. After that, the organoids were cultured in basal mediumwith

no additional factors until harvest at day 26. For ES (H9) cell line, we adjusted the concentration of CHIR to 5uM in Takasato protocol

and to 8uM in Morizane protocol at the initial step.

DropSeq scRNA-seq
Organoids were dissociated using TrypLE Select (Thermo Fisher Scientific) at 37�C with shaking. After 5 min, cells were further

dispersed by gentle pipetting and filtered through a 40mm cell strainer (pluriSelect). Single cell suspension was visually in-

spected under a microscope, counted by hemocytometer (INCYTO C-chip) and resuspended in PBS + 0.01% BSA. Single cells

were coencapsulated in droplets with barcoded beads exactly as described (Macosko et al., 2015). In brief, cells were diluted to

a concentration of 100 cells/mL, and co-encapsulated with barcoded beads (ChemGenes #Macosko201110), which were

diluted to a concentration of 120 beads/mL. Droplets of about 1 nL in size were generated using microfluidic polydimethylsilox-

ane (PDMS) co-flow devices (FlowJEM Drop-seq chips). Droplets were collected in a 50-mL RNase-free Falcon tube for a total

run time of about 15 min. Droplet emulsion was aliquoted into 1 mL each of cells and beads and were broken promptly by per-

fluorooctanol, following which barcoded beads with captured transcriptomes were washed and spun down at 4�C. Hybridized
e3 Cell Stem Cell 23, 1–13.e1–e8, December 6, 2018
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RNA was reverse transcribed and exonuclease-treated using commercial kits (See Key Resources Table). The beads from one

run were then equally distributed into individual PCR tubes with populations of 8,000 beads/tube (�400 cells). PCR tubes were

separately amplified for 4+9 PCR cycles, and the PCR products were purified by the addition of 0.6x Agencourt AMPure

XP beads (Beckman Coulter #A63881). The quality of the amplified cDNA was evaluated by Bioanalyzer (Agilent 2100) on a

High Sensitivity DNA chip. Only cDNA with average insertion size > 1200 bp were used for downstream library preparation

and sequencing. cDNA from an estimated 5,000 cells were prepared and tagmented by Nextera XT (Illumina) using 600 pg

of cDNA input. cDNA library was amplified (12 cycles) using custom primers as described (Macosko et al., 2015). Amplified

libraries were purified with a 0.6x volume of AMPure XP beads and quality was measured by Bioanalyzer. Libraries with average

length of �500-700 bp were submitted to Genome Technology Access Center (GTAC) of Washington University in St. Louis and

sequenced on HiSeq 2500 and NovaSeq 6000 (Illumina). We routinely tested our DropSeq setup by running species mixing

experiments prior to running on actual sample to assure that the cell doublet rate was below 5%. Information about experi-

mental replicates and count statistics is specified in Table S1.

Nuclei isolation and snRNA-seq of human kidney
Nuclei were isolated with Nuclei EZ Lysis buffer (Sigma #NUC-101) supplemented with protease inhibitor (Roche #5892791001) and

RNase inhibitor (Promega #N2615, Life Technologies #AM2696). Samples were cut into < 2 mm pieces and homogenized using a

Dounce homogenizer (Kimble Chase #885302-0002) in 2ml of ice-cold Nuclei EZ Lysis buffer and incubated on ice for 5 min with

an additional 2ml of lysis buffer. The homogenate was filtered through a 40-mm cell strainer (pluriSelect #43-50040-51) and then

centrifuged at 500 x for 5 min at 4�C. The pellet was resuspended and washed with 4 mL of the buffer and incubated on ice for

5 min. After another centrifugation, the pellet was resuspended with Nuclei Suspension Buffer (1x PBS, 0.07% BSA, 0.1% RNase

inhibitor), filtered through a 20-mm cell strainer (pluriSelect 43-50020-50) and counted. RNA from single nucleus was encapsulated,

barcoded and reversed transcribed on a 10x Chromium Single Cell Platform (10x Genomics). The library was sequenced in

HiSeq2500.

Immunofluorescence
Organoids were fixed in 4% paraformaldehyde (Electron Microscopy Services), cryoprotected in 30% sucrose solution overnight

and embedded in optimum cutting temperature (OCT) compound (Tissue Tek). Organoids were cryosectioned at 7mm thickness

and mounted on Superfrost slides (Thermo Fisher Scientific). Sections were washed with PBS (3 times, 5 minutes each), then

blocked with 10% normal goat serum (Vector Labs), permeabilized with 0.2% Triton X-100 in PBS and then stained with primary

antibody specific for mouse anti-WT1 (1:200, Santa Cruz Biothechnology, #SC-7385), rat anti-ECAD (1:200, Abcam, #ab11512),

biotinylated LTL (1:200, Vector Labs, #B-1325), sheep anti-NPHS1 (1:200, R&D Systems, #AF4269) and rabbit anti-CRABP1

(1:200, Cell Signaling, #13163), chicken anti-MAP2 (1:200, Abcam, #ab5392) and mouse anti MEIS1 (1:200, Active Motif,

#39795). Secondary antibodies included FITC-, Cy3, or Cy5-conjugated (Jackson ImmunoResearch). Then, sections were stained

with DAPI (40,60- diamidino-2-phenylindole) and mounted in Prolong Gold (Life Technologies). Images were obtained by confocal

microscopy (Nikon C2+ Eclipse; Nikon, Melville, NY).

BDNF inhibitor (K252a) treatment
We treated the iPSC derived kidney organoids differentiated from Takasato protocol with different doses of a BDNF inhibitor,

K252a (Sigma-Aldrich #K1639). A dose of 250 nMwas selected because the organoid size and tubularmorphology were not altered

at this concentration. Starting from day 12, we supplemented K252a to the basal medium, and differentiated the organoid to day 26 in

the presence of K252a. Themedium containing K252a was replaced every 2 days. At day 26, two different batches of organoids were

harvested for DropSeq, immunofluorescence and qPCR.

Real Time PCR Experiments
RNA from whole organoids was extracted using the RNeasy Mini Kit (QIAGEN) and 600 ng of total RNA was reverse transcribed with

iScript (BioRad). Quantitative polymerase chain reactions were carried out with iQ-SYBR Green supermix (BioRad) and the BioRad

CFX96 Real Time System with the C1000 Touch Thermal Cycler. Cycling conditions were 95�C for 3 minutes then 40 cycles of 95�C
for 15 s and 60�C for 1 minute, followed by one cycle of 95�C for 10 s. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

was used as a housekeeping gene. Data was analyzed using the 2-DDct method. The following primers were used: GAPDH: Fw

50-GACAGTCAGCCGCATCTTCT �30; Rv 5‘-GCGCCCAATACGACCAAATC �30; Cited1: Fw 50-CCTCACCTGCGAAGGAGGA �30;
Rv 5‘-GGAGAGCCTATTGGAGATCCC�30; NPHS1: Fw 50-CTGCCTGAAAACCTGACGGT�30; Rv 5‘-GACCTGGCACTCATACTCCG

�30; SLC3A1: Fw 50-CAGGAGCCCGACTTCAAGG �30; Rv 5‘-GAGGGCAATGATGGCTATGGT �30

SLC12A1: Fw 50-AGTGCCCAGTAATACCAATCGC �30; Rv 5‘-GCCTAAAGCTGATTCTGAGTCTT �30; CRABP1: Fw 50-GCAGC

AGCGAGAATTTCGAC �30; Rv 5‘-CGTGGTGGATGTCTTGATGTAGA �30; MAP2: Fw 50-CTCAGCACCGCTAACAGAGG �30; Rv
5‘-CATTGGCGCTTCGGACAAG �30; MYLPF: Fw 50-GAAGGACAGTAGAGGGCGGAA �30; Rv 5‘-TCTGGTCGATCACAGTGAAGG

�30; MYOG: Fw 50-GGGGAAAACTACCTGCCTGTC �30; Rv 5‘-AGGCGCTCGATGTACTGGAT �30; MLANA: Fw 50-GCTCACTT

CATCTATGGTTACCC �30; Rv 50-GACTCCCAGGATCACTGTCAG �30; PMEL: Fw 50-AGGTGCCTTTCTCCGTGAG Rv 50-AGCTTCA

GCCAGATAGCCACT �30
Cell Stem Cell 23, 1–13.e1–e8, December 6, 2018 e4
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QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing of DropSeq data
Paired-end sequencing reads were processed as previously described using the Drop-Seq Tools v1.12 software available in

McCarroll’s lab (http://mccarrolllab.org/dropseq). Briefly, each cDNA read (read2) was tagged with the cell barcode (the first

12 bases in read 1) and unique molecular identifier (UMI, the next 8 bases in read 1), trimmed of sequencing adaptors and poly-A

sequences, and aligned to the human (GRCh38) or a concatenation of the mouse and human (for the species-mixing experiment)

reference genome assembly using STAR v 2.5.3a (Dobin et al., 2013). Cell barcodes were corrected for possible bead synthesis

errors using the DetectBeadSynthesisErrors program, and then collapsed to core barcodes if they were within an edit distance of

1 as previously described (Macosko et al., 2015). Digital gene expression (DGE) matrix was compiled by counting the number of

unique UMIs for a given gene (as row) in each cell (as column).

Global clustering analysis
To assess the difference in cell composition across differentiation protocols and cell lines, we performed global clustering analysis on

ten datasets from Dropseq sequencing of the day 26 organoids. First, we combined the UMI count matrices from different protocols

and cell lines into one gene-cell matrix using themerge function in R.We then removed the low-quality cells with less than 500 ormore

than 4000 detected genes, or if their mitochondrial gene content was > 20%. Genes were filtered out that were detected in less than

10 cells. This filtering step resulted in 24,574 genes X 71,390 cells sampled from four batches Takasato iPS organoids (26,890 cells),

three batches Morizane iPS organoids (18,072 cells), two batches Takasato ES organoids (19,380 cells) and one batch Morizane ES

organoids (7,048 cells). The gene expression was then natural log transformed and normalized for scaling the sequencing depth to a

total of 1e4 molecules per cell. Batch effect was corrected bymatching mutual nearest neighbors using a recently published pipeline

(incorporated in scran R package) (Haghverdi et al., 2018). Dimensionality reduction and clustering were performed on the batch

effect corrected expression value using Seurat R tool kit.

A total of 23 clusters were classified from this analysis, consisting of cells from four broad ‘‘classes’’ defined as mesenchyme, tu-

bule, podocyte and off-target cells based on their marker genes expression. We then performed a post hoc merging step, where

transcriptionally indistinguishable clusters are merged back together. First, the distance between each pair of clusters within the

broad cell class was computed based on the averaged expression value of the highly variable genes. Second, hierarchical clustering

analysis was performed on the distancematrix using the hclust function fromR.We thenmerged transcriptionally similar clusters that

were placed adjacent on the hierarchical tree. With this approach, we identified five transcriptionally distinct subtypes in the tubule

class, and 3 distinct subtypes in themesenchyme class. Finally, we assessed the cell compositions by calculating the number of cells

in each cluster or broad class, subdivided by the differentiation protocol and cell line.

Clustering analysis on the organoid cells from different protocols or cell lines
Seurat was used for quality control, dimensionality reduction and cell clustering for the Dropseq datasets generated by each protocol

or cell line. In brief, raw DGE matrices from different batches for each protocol on each cell line were combined and loaded into the

Seurat. For normalization, the DGE matrix was scaled by total UMI counts, multiplied by 10,000 and transformed to log space. Only

genes found to be expressing in > 10 cells were retained. Additional filtering was set on the number of detected genes andmitochon-

drial gene content to remove the low-quality cells or cell doublets. We note that, depending on the sequencing depth and the var-

iations in mitochondrial gene content from dataset to dataset, the cutoffs may need to be set on a case-by-case basis. Before

clustering, variants arising from batch effects, library size and percentage of mitochondrial genes were regressed out by specifying

the vars.to.regress argument in Seurat function ScaleData. The highly variable genes were identified using the function FindVariable-

Genes. The expression level of highly variable genes in the cells was scaled and centered along each gene, and was conducted to

principal component analysis. We then assessed the number of PCs to be included in downstream analysis by (1) plotting the cumu-

lative standard deviations accounted for each PC using the functionPCElbowPlot in Seurat to identify the ‘knee’ point at a PC number

after which successive PCs explain diminishing degrees of variance, and (2) by exploring primary sources of heterogeneity in the

datasets using the PCHeatmap function in Seurat. Based on these two methods, we selected first top significant PCs for two-

dimensional t-distributed stochastic neighbor embedding (tSNE), implemented by the Seurat software with the default parameters.

We used FindCluster in Seurat to identify cell clusters for each protocol. Alternatively, A hierarchical clustering method devised by

Baron et al. (2016) was recruited to validate the clusters identified by Seurat. To identify the marker genes, differential expression

analysis was performed by the function FindAllMarkers in Seurat with likelihood-ratio test. Differentially expressed genes that

were expressed at least in 25%cells within the cluster andwith a fold changemore than 0.25 (log scale) were considered to bemarker

genes. Gene expression of selected markers across clusters were visualized using a Python plotting library Matplotlib.

Sub-clustering tubular cells in Morizane protocol (cluster PT1, PT2, and LH) and Takasato protocol (cluster PT1, PT2, LH, and Lp)

were first combined, then sub-clustered using the same approach described above. We identified 12 significant PCs in 3,056 tubular

cells from Takasato protocol and 10 PCs in 4,933 tubular cells fromMorizane protocol, which were further assigned into 9 and 5 sub-

clusters, respectively. To further compare the cell types generated from the two protocols, we extracted the expression matrix for

PT2 (a more mature PT cluster), LH and podocyte from each protocol, and used the combined matrices as input to Seurat. After

regressing out potential protocol effect and library size difference, we performed differential gene analysis on the PT cells between
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protocols with likelihood-ratio test. Developmental genes were selected based on the anchor/marker genes listed in GUDMAP

(McMahon et al., 2008) and visualized by DotPlot function in Seurat.

For the time course Dropseq data, the datasets were preprocessed before being placed in the Seurat package. The matrices from

all time points were merged into one single matrix with the merge function in R. To retain the gene expression variants across time

course, all genes from each time point were kept in the merged matrix by assigning zeros to the genes for those cells who have

missing expression value. 20 significant PCs calculated from 1,345 high variable genes were selected for tSNE and clustering anal-

ysis. We identified 14 clusters including key cell types corresponding to the important developmental states. We selected genes that

represent each development stages and visualized them in tSNE map. Initially, we used the normalized gene expression value but

found that the high dropout events in single cell data obscure the dynamic gene expression changes across time course. We there-

fore applied a gene imputation approach named MAGIC (van Dijk et al., 2018) to computationally fill in the missing value for all genes

in our time course dataset. In brief, the merged time-course count matrix was loaded into the MAGIC pipeline written in Python

(https://github.com/KrishnaswamyLab/MAGIC). Gene expression value in all cells were normalized, dimensionally reduced and

transformed by the internal algorithms in MAGIC with the parameters: n_pca_components = 20, random_pca = True, t = 6, k = 30,

ka = 10, epsilon = 1, rescale_percent = 99. Developmental genes and marker gene expression across time points after MAGIC impu-

tation were visualized in the tSNE map constructed by Seurat and on the pseudotemporal trajectory tree constructed by Monocle

(see methods below).

sNuc-10X data processing and clustering analysis
We used a newly developed pipeline, zUMIs (Parekh et al., 2018), to process the single nucleus sequencing data from human adult

kidney. In brief, we first filtered out the low-quality barcodes or UMIs based on sequence with the internal read filtering algorithm built

in zUMIs. We then used zUMIs to map the filtered reads to human reference genome (GRCh38) using STAR 2.5.3a (two-pass map-

ping mode). Next, zUMIs quantified the reads that were uniquely mapped to exonic, intronic or intergenic region of the genome and

inferred the true barcodes that mark cells by fitting a k-dimensional multivariate normal distribution with mclust package. Finally, a

UMI count table utilizing both exonic and intronic reads were generated for downstream analysis. The whole data processing

was executed by running the script on a HPC cluster with 96 3 2.3GHz computing cores (http://brc.wustl.edu/?page_id=12)

with the following example script: bash zUMIs-master.sh -f R1.fastq.gz -r R2.fastq.gz -c 1-16 -m 17-26 -l 98 -n Human_kidney

-g GRCh38_ref_genome -a GRCh38_ref_genes.gtf -p 30. Clustering analysis was performed on Seurat with a similar approach

used for analyzing the organoid Dropseq datasets.

Integrated analysis of multiple datasets
To compare the cell types derived from different organoid protocols/cell lines and those from adult human kidney, we performed

comparative analysis on multiple datasets by utilizing a recently developed computational strategy for integrated analysis (imple-

mented in Seurat v2.0) (Butler et al., 2018). We first selected the union of the top 3,000 genes with the highest dispersion from all

datasets for a canonical correlation analysis (CCA) to identify common sources of variation across the datasets. Then CCA was per-

formed based on the normalized expression value of the highly-dispersed genes. Next, we selected the top dimensions of the CCAby

examining a saturation in the relationship between the number of principle components and the percentage of the variance explained

using the MetageneBicorPlot function in Seurat. We obtained a new dimensional reduction matrix by aligning the CCA subspaces

with the top dimensions computed above. With the new dimensional reduction matrix, we performed clustering analysis on the cells

or nuclei fromdifferent datasets by setting an optimal clustering parameters.We visualized the cells by their original identity or by their

cluster identity classified by this integrated analysis. Differential gene analysis was performed on the cells or nuclei from different

datasets but grouped in the same cluster after the alignment analysis. Differential genes were visualized using the FeatureHeatmap

or DotPlot function in Seurat. We applied this computational strategy to compare the matched cell types (i.e., podocyte, PT and LH)

from organoids and adult human kidney.

Cell cycle analysis
Weassigned a cell cycle score on each cell according to its gene expression of G2/M andSphasemarkers (Tirosh et al., 2016). Based

on this scoring system, we classified each cell in either G2M, S or G1 phase using theCellCycleScoring function in Seurat. The cells at

different cell cycle classifications were visualized in the tSNE map, and the expression of cell cycle genes were plotted out using

FeaturePlot function in Seurat.

Correlation analysis of kidney organoid and mouse/human kidney
To assess the similarity between kidney organoid cell types and embryonic kidney, we re-analyzed three previously published data-

sets frommouse E14.5 kidney (GEO: GSE104396) (Magella et al., 2018), P1 kidney (GEO: GSE94333) (Adam et al., 2017) and human

fetal kidney (GEO: GSE102596) (Lindström et al., 2018b). We used the Seurat clustering parameters described by the authors and

reproduced the same cell types from the datasets. We calculated the Pearson correlation based on the expression patterns of highly

variable genes between cell populations within the mouse embryonic kidney dataset against the organoid cell types and the DT cell

type identified from subclustering analysis. we performed the same analysis to compare organoid cell types to the human adult kid-

ney cell types identified from the snRNA-seq dataset (data from this manuscript). Correlation matrix were visualized by R package

pheatmap. Color keys (and dot sizes) represent the range of the coefficients of determination (r2) in each analysis.
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Hierarchical clustering analysis on the cell types from kidney organoids
To reveal the relationship among thematched cell types derived fromMorizane and Takasato protocols, we extracted the expression

profiles for P1, M3, PT2, LH and N2 subtypes from the Morizane organoid datasets and expression profiles for P, M3, PT2, LH, N2,

and EC from the Takasato organoid datasets. Then we normalized the gene expression and computed the distance between each

pair of cell types based on their average gene expression. Hierarchical clustering was performed on the distance matrix using hclust

function in R andwas visualized by dendrogram.We used the dendextend R package to compare the dendrogram from theMorizane

organoid dataset and the Takasato organoid dataset.

Random Forest model to map cell types from human fetal kidney
To determine the congruence between cell types obtained from our organoid datasets and those in a recent fetal kidney dataset

(Lindström et al., 2018b), we trained a multiclass random forest classifier (Habib et al., 2017; Shekhar et al., 2016) on the fetal kidney

cell clusters and used it to map the organoid cell type. First, we composed a ‘training set’ by sampling 60% of the cells from 5 fetal

kidney clusters representing mesenchyme, LH, PT, podocyte, endothelium and a cycling cell population (defined as mesenchyme

progenitor). We next trained a random forest using 1,000 trees on the training set using the R package randomForest. We then

used the remaining 40% of the cells from each cluster from the human fetal kidney dataset to validate the performance of the trained

classifier. We used this model to assign a class label (one of the 5 human fetal kidney cell types) to each cell from kidney organoids.

Finally, we quantified the number of cells that were mapped to each class label and visualized the data using ggplot2 package.

Cell type specific driving force analysis
To identify the key regulators that control the cell states, we performed cell type specific driving force analysis using the SINCERA

pipeline (Guo et al., 2015). This approach consists of three main steps. First, the candidate transcription factors (TFs) and their reg-

ulatory target genes (TGs) were extracted from the DEG list identified in each cluster. Second, cell type specific transcription regu-

latory network (TRN) was constructed by establishing the interaction between TF-TF and TF-TG (TG-TF and TF auto-regulations were

not considered) as previously described (Lèbre, 2009). Finally, the key TFs were selected based on their network node importance.

This was accomplished by collecting the value of six node importance metrics including Degree Centrality (DC), Closeness Centrality

(CC), Betweenness Centrality (BC), Disruptive Fragmentation Centrality (DFC), Disruptive Connection Centrality (DCC) andDisruptive

Distance Centrality (DDC). TFs were ordered by taking the average of the node importance from these six matrices.

Deconvolution of bulk RNA-seq data
To examine the possible use of our single cell data to infer the cell type compositions (deconvolution) from the bulk RNA profiling, we

retrieved the previously published RNA-Seq dataset from Takasato et al. (GEO: GSE70101) (Takasato et al., 2015). This dataset con-

tains gene expression profiles of time-course organoids collected at similar time-points (day 7, day 10, day 18 and day 25) as those

collected for our time-course single cell study. We then applied a single cell deconvolution algorithm, BSeq-sc (Baron et al., 2016), to

estimate the proportion of iPS cells, PIM, pretubular aggregate, PT, LH, podocyte and neurons in each time point from bulk RNA-seq

datasets. The identified marker genes for each cell type from our time-course single cell data were used as an input to estimate the

cell proportion in each time point of the bulk-seq data according to the tutorial from BSeq-sc package (https://shenorrlab.github.io/

bseqsc/vignettes/bseq-sc.html).

GWAS analysis
We downloaded GWAS gene lists associated with chronic kidney disease, hypertension and metabolite from the GWAS site (https://

www.ebi.ac.uk/gwas/). Each associated gene that was identified as significant in a GWAS (reported gene) was mapped to the cell

type marker gene list obtained from Seurat FindAllMarker function. To plot the GWAS genes, we normalized the gene expression

value for each cell by z-scores and generated a new gene expression matrix with mean z-scores for each GWAS gene by averaging

the z-score value from all individual cells in the same cluster (i.e., a mean z-scores matrix with GWAS genes as rows and cell type ID

as columns). Heatmap.2 function in gplots R package was used to create all heatmap graphs in this analysis.

Kidney disease trait association with single cell-based cell types
We used RolyPoly, a polygenic method that identifies trait-involved cell types by analyzing the enrichment of GWAS signal in cell type

specific gene expression (Calderon et al., 2017), to associate the kidney disease trait with gene expression profile from our single cell

data. Since Rolypoly requires four indispensable components as data input (GWAS summary statistics, expression data, an expres-

sion data annotation file, and linkage disequilibrium (LD) information), we prepared each of them as follows. First, we obtained the

summary meta-analysis data from the CKDGen consortium (http://ckdgen.imbi.uni-freiburg.de) for the associations between geno-

type and CKD or eGFR on the basis of serum creatinine (eGFRcrea) based on Li et al.’s study (Li et al., 2017; Pattaro et al., 2016). To

prepare cell type expression data, we computed the average expression on each cell type from Takasato’s iPS organoid, Morizane’s

iPS organoid, and adult human kidney. To link gene expression with the location of GWAS variants, we defined a block as a 10kb

window centered around each gene’s transcription start site (TSS) as recommended by rolypoly. The TSS for all known hg19 genes

was downloaded from UCSC Genome Browser (https://genome.ucsc.edu/). Finally, the linkage disequilibrium (LD) information

was provided by rolypoly based on the calculation using PLINK for 1000 g phase 3 genomes filtered for values of R2 > 0.2
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(https://cran.r-project.org/web/packages/rolypoly/vignettes/intro.html). We input all these data into the main rolypoly function call

using the default parameters. Significant association between cell type and CKD or eGFR was determined by p value.

Pseudotemporal ordering
We usedMonocle2 (Qiu et al., 2017) (default settings) to draw aminimal spanning tree connecting the 9,190 cells collected from time

course organoids into multiple lineages. As input into Monocle2, we selected the ordering genes using a semi-supervised approach

as described in theMonocle2 tutorial (http://cole-trapnell-lab.github.io/monocle-release/docs_mobile/). Specifically, we first defined

the genes that mark the kidney organoid differentiation process and terminal cell lineage. The criteria for the gene selection include:

1) they are putatively reported asmarkers for the kidney developmental state or terminally kidney cell fate. 2) they are specific marker

genes differentially expressed in the clusters identified by Seurat as noted above. We used them to select the ordering genes that

co-vary with thesemarkers using theMonocle functionmarkerDiffTable. With this approach, we generated a final gene set containing

1,604 genes. We then reduced the data space to two dimensions with ‘DDRTree’ method and ordered the cells using the orderCells

function inMonocle. Individual cells were color-coded based on the time points where they were collected to validate the accuracy of

the cell ordering. We further colored the cells with the cell type identity classified by Seurat as noted above to assure that the ordering

is meaningful. We plotted the gene expression on the Monocle tree using MAGIC imputed value as described above.

Ligand-receptor interaction analysis
To study the ligand-receptor interaction at single cell level, we used a human ligand–receptor list comprising 2,557 ligand–receptor

pairs curated by Database of Ligand�Receptor Partners (DLRP), IUPHAR and Human Plasma Membrane Receptome (HPMR)

(Hrvatin et al., 2018; Ramilowski et al., 2015). We selected the receptors that were only differentially expressed in each cell type

from the day 26 organoid (Takasato protocol), and the ligands that were induced in either branch on the cell trajectory based on

the results computed by the branched expression analysis modeling (BEAM) algorithm in Monocle. To determine the ligand-receptor

pairs to plot on the heatmap, we required that (i) The ligands are branch-dependent with significant score q-val < 0.01 based on the

score table from BEAM analysis; (ii) The receptors are uniquely expressed in each cell type (q-val < 0.05 and logFC > 0.6); (iii) Each

receptor should have at least one corresponding ligand to pair with. We used plot_genes_branched_heatmap function from the

Monocle2 package to plot the ligands and heatmap.2 function from gplots package to show the receptors expressed in each cell

type. We used the same list of ligand-receptor pairs to identify cell-type specific ligands and receptors in human adult kidney and

employed a network approach to visualize the cell type communication based on connections of ligand-receptor pairs (Ramilowski

et al., 2015).

Real Time PCR data quantification and statistical analysis
Data were presented as mean ± SEM. ANOVA with post hoc Bonferroni correction was used for multiple group comparison. Student

t test was used to compare 2 different groups. Graph-Pad Prism software, version 6.0c (GraphPad Software Inc., San Diego, CA) and

SPSS version 22 were used for statistical analysis. P value < 0.05 was considered as statistical significant difference.

Experimental Design

The number of replicate organoids is included in Table S1. Experimental groups were neither randomized nor blinded. No sample-

size estimates were made and the inclusion criteria for analyzing adult human kidney was having normal kidney function and no

known kidney disease.

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA sequencing data reported in this paper is NCBI GEO: GSE118184. Additional figures can be

assessed at Mendeley Data: https://doi.org/10.17632/m4rfg9wb29.1
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