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Here, we outline p-Creode, a new algorithm to construct multi-branching cell lineage trajectories from single-
cell data. Application of this platform to diverse sources of single-cell data demonstrates its robustness and
scalability, while the discovery of a new origin for rare gut tuft cells showcases the utility of p-Creode.
Single-cell technologies are entering the

mainstream, having demonstrated their

utility to elucidate a diverse range of com-

plex biological phenomena. Single-cell

analysis is fast becoming indispensable

for the study of biology concerning stem

cell and developmental processes, where

heterogeneous cell populations undergo

dynamic changes, differentiating toward

many distinct identities. Amplifying this

complexity, the passage of cells along

these trajectories is not perfectly synchro-

nous. The resulting diversity in cellular

states and identities means that popula-

tion-based analyses rarely provided the

resolution that is necessary to dissect

the true biological heterogeneity of a

differentiating system despite efforts to

enrich for cell populations of interest and

experimental designs to enhance tempo-

ral resolution. Single-cell analyses pro-

vide context and resolution to this intri-

cate cellular choreography, underpinning

a new wave of discovery. In this issue of

Cell Systems, Charles Herring, Ken Lau,

and colleagues present a novel algorithm,

p-Creode that facilitates the dissection of

complex single-cell data collected from

diverse sources (Herring et al., 2018). Via

an unsupervised approach, p-Creode

generates multi-branching trajectories

whose robustness can be statistically

assessed. The authors demonstrate the

efficacy of p-Creode through the identifi-

cation of a new developmental origin for

tuft cells, a rare chemosensory cell that

is situated in the gut.

Varied experimental approaches

enablingsingle-cell analysiscurrentlyexist,

ranging from single-cell RNA sequencing

(scRNA-seq) to mass cytometry to multi-
plex immunofluorescence (MxIF) (de Var-

gas Roditi and Claassen 2015). These

techniques enable the measurement of

tens to thousands of variables from each

individual cell, yielding what is termed

‘‘high-dimensional data.’’ These advances

have permitted simultaneous profiling of

heterogeneous populations, where high-

throughput single-cell technologies now

enable transcriptomes from thousands of

cells to be captured in parallel (Macosko

et al., 2015; Klein et al., 2015). The collec-

tion of potentially thousands of measure-

ments frommultitudesof cells is accompa-

nied by significant challenges for the

analysis and interpretation of these data.

For instance, how can this abundance of

information be conceptualized? In this

respect, much progress has been made

to reduce the dimensionality of the data,

clustering cells based on feature similarity

to enable visualization and identification

of cell subpopulations within heteroge-

neous tissues (Satija et al., 2015).

Surveying cells from developing and

differentiating tissues represents a more

complicated challenge, involving transi-

tions between discrete fates, introducing

potentially ambiguous cell identities that

are difficult to define. Most high-dimen-

sional single-cell capture techniques

destroy cells, resulting in the capture of

static ‘‘snapshot’’ data. As a conse-

quence, invaluable spatial, temporal, and

lineage information is lost. Elegant analyt-

ical approaches are emerging, though,

focusing on recovery of this information

to reconstruct differentiation hierarchies

from snapshot data. Assuming that cell

identity transitions gradually during differ-

entiation, algorithms have been devel-
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oped to position each profiled cell within

a defined trajectory, termed a ‘‘pseudo-

temporal’’ order. This approach has

indeed enabled lineage progressions to

be reconstructed from single-cell data,

leveraging the fact that differentiation

tends to be asynchronous, resulting in a

diverse range of stages and transitions

being captured within a single snapshot.

One class of methods are based on mini-

mum spanning tree (MST) algorithms,

which effectively aim to ‘‘join the dots’’

between similar cells, mapping the

longest path through the data to create

a pseudo-temporal cell fate trajectory.

These approaches can be unstable,

though, having a tendency to generate

different cell fate topologies from the

same input data, in addition to producing

misleading branches in the trajectory as a

result of overfitting (Giecold et al., 2016).

Early analytical approacheswere based

on linear methods such as principal

component analysis (PCA) and indepen-

dent components analysis (ICA) (Trapnell

et al., 2014). Although successful in

some instances, linear methods are

generally not well-suited to complex

developmental datasets that encompass

multiple branch-points toward distinct ter-

minal cell identities. In this respect, non-

linear data-embedding approaches have

met with greater success for reconstruct-

ing multi-branching cell lineage trajec-

tories. Even so, data structure, distribu-

tion, and size can impact the accuracy of

these non-linear algorithms, producing

variable results (Haghverdi et al., 2015).

For example, differences in data dimen-

sionality can confound analysis; MxIF

and mass cytometry generate relatively
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Figure 1. p-Creode Is Based on an EnsembleMethod; the Final Result Is Generated by the Consolidation of Sub-outcomes ofMany Iterations
(i) Single-cell data are downsampled to generate probabilistic sub-datasets. (ii) The down-sampled dataset is used to construct many preliminary trajectories,
using a density-based k-nearest neighbor method that leverages not only the distance between individual cells but also information on the distribution of the
population. (iii) Via this approach, transition and terminal differentiation states are identified, from which (iv) trajectories are constructed in an unsupervised
manner. (v) p-Creode then deduces the consensus structure to produce a representative topology. (vi) As a result of random downsampling and iteration, this
enables the statistical verification of the resulting pseudo-temporal cell trajectories.
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low-dimensional data, while scRNA-seq

produces high-dimensional data, accom-

panied by variations in data sparsity that

can impact algorithm performance. In

addition, depending on the degree of cell

heterogeneity within a population, the tra-

jectories of rare cell populations can easily

be masked. Given these uncertainties,

particularly considering the myriad cell

types and platforms employed in profiling,

methods to statistically validate algorithm

performance are increasingly sought

after. In this respect, Wishbone, an algo-

rithm based on supervised random-walk

over a cellular network, generates results

that are statistically scored, although prior

knowledge of the biological system is

required for construction of multi-branch

temporal order graphs (Setty et al.,

2016). At present,manyalgorithms are un-

predictable and highly sensitive to both

biological and technological context.

Thus, there is currently an unmet need

for an unsupervised analytical approach

that is versatile and that canbe statistically

validated to assess the robustness of the

trajectories produced.

In an effort to address these current lim-

itations, Herring et al. (2018) have devel-

oped a new algorithm, p-Creode. Named

for the valleys carved into Waddington’s

landscape, p-(putative) Creode con-

structs multi-branched pseudo-time tra-

jectories in an unsupervised manner

from a wide variety of single-cell data

streams. Similar to above approaches,

p-Creode assumes that cell identity tran-

sitions gradually during differentiation

and can, therefore, be pieced together

from snapshot data. Broadly, the algo-

rithm determines the geometric shape of
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dense single-cell data points in an effort

to reveal underlying transition structures

within the data, aiming to identify

consensus routes representative of the

differentiation process. Setting it apart

frommany current approaches, p-Creode

statistically validates the trajectories it

generates. Via a multistage process

(Figure 1), the strategy of p-Creode is

based on an ensemble method; the final

result is generated by the consolidation

of sub-outcomes of many iterations. First,

single-cell data are downsampled to

generate probabilistic sub-datasets. Sub-

sequently, the downsampled dataset is

used to construct many preliminary tra-

jectories, using a density-based k-nearest

neighbor method that leverages not only

the distance between individual cells,

but also information on the distribution

of the population. Via this approach, tran-

sition and terminal differentiation states

are identified, from which trajectories are

constructed in an unsupervised manner.

p-Creode then deduces the consensus

structure to produce a representative to-

pology. As a result of random downsam-

pling and iteration, this enables the

statistical verification of the resulting

pseudo-temporal cell trajectories, in addi-

tion to reducing the effect of noise on sin-

gle-cell data. Employing this new metric,

the p-Creode score for estimating the dif-

ferences in graph topology, the authors

demonstrated the remarkable reproduc-

ibility of their approach relative to an exist-

ing pseudo-time analysis method, SPADE

(Linderman et al., 2012). This introduces

p-Creode as a new ensemble approach

and statistical validation metric to ensure

robustness and reproducibility in the
unsupervised reconstruction of multi-

branching trajectories.

Application of p-Creode to single-cell

mass spectrometry analysis of hemato-

poiesis, a hierarchical and well-character-

ized differentiation process, validated the

efficacy of the unsupervised algorithm,

generating a multi-branching trajectory in

agreementwith previousbiological knowl-

edge. Following this validation, Herring

et al. (2018) examined intestinal differenti-

ation. They analyzed 39,000 small intesti-

nal cells and 17,000 colonic epithelial cells

viaMxIF, using p-Creode to deducemulti-

branching differentiation trajectories of

the intestinal epithelium. Focusing on a

rare chemosensory cell type, tuft cells,

p-Creode was able to reveal key differ-

ences of tuft cell biological origins be-

tween the small and large intestine.

The next challenge for p-Creode was to

test its performance with high-dimension

scRNA-seq data. Using publicly available

scRNA-seq data of alveolar epithelial cell

differentiation obtained by the Fluidigm-

C1 system and hematopoiesis data ac-

quired by massively parallel single-cell

RNA sequencing (MARS-seq), p-Creode

accurately reconstructed trajectories

from both datasets that are in agreement

with previous reports. In fact, p-Creode

identified not only major cell differentiation

trajectories, but also sub-branches in he-

matopoietic pathways, demonstrating

its potential to identify both global and

local structures simultaneously.Moreover,

application of p-Creode to these two data-

sets highlighted the versatility and robust-

ness of theplatform:while itwasnot devel-

oped for application to smaller numbers of

single cells, it performed well with alveolar
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development data consisting of a relatively

small number of cells (< 500). This robust

performance with smaller datasets may

be due to the effective removal of noise

as a result of downsampling and

consensus alignment.

Advancing dramatically, single-cell

technology is producing an ever-expand-

ing array of multidimensional information

and is fast becoming an indispensable

source of information for delineating

complex developmental processes. How-

ever, due to lack of analytical capability

for large-scale multidimensional single-

cell data, it is not trivial to fully utilize this

information. p-Creode generates repro-

ducible pseudo-time trajectory graphs

after many rounds of sub-graph con-

struction, consensus alignment, and sta-

tistical scoring. This new strategy endows

p-Creode with robustness and reproduc-

ibility. Perhaps most exciting is the prom-

ise of this platform to provide mechanistic

insights into differentiation process; the

statistical power of p-Creode has the po-

tential to define deterministic, probabi-

listic, or stochastic events during cell fate

determination processes. Beyond devel-
opment, the utility of p-Creode to assess

cell fate trajectories will find wide applica-

tion in the analysis of disease processes

and cell fate engineering. Altogether, this

launches p-Creode as a robust, flexible,

and scalable platform that promises to

form an essential component of the sin-

gle-cell analytical toolkit.

REFERENCES

de Vargas Roditi, L., and Claassen, M. (2015).
Computational and experimental single cell
biology techniques for the definition of cell type
heterogeneity, interplay and intracellular dy-
namics. Curr. Opin. Biotechnol. 34, 9–15.

Giecold, G., Marco, E., Garcia, S.P., Trippa, L., and
Yuan, G.C. (2016). Robust lineage reconstruction
from high-dimensional single-cell data. Nucleic
Acids Res. 44, e122.

Haghverdi, L., Buettner, F., and Theis, F.J. (2015).
Diffusion maps for high-dimensional single-cell
analysis of differentiation data. Bioinformatics 31,
2989–2998.

Herring, C.A., Banerjee, A., McKinley, E.T., Sim-
mons, A.J., Ping, J., Roland, J.T., Franklin, J.L.,
Liu, Q., Gerdes, M.J., Coffey, R.J., et al. (2018).
Unsupervised trajectory analysis of single-cell
RNA-seq and imaging data reveals alternative tuft
cell origins in the gut. Cell Systems 6, this
issue, 37–51.
Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada,
N., Veres, A., Li, V., Peshkin, L., Weitz, D.A., and
Kirschner, M.W. (2015). Droplet barcoding for sin-
gle-cell transcriptomics applied to embryonic
stem cells. Cell 161, 1187–1201.

Linderman, M.D., Bjornson, Z., Simonds, E.F., Qiu,
P., Bruggner, R.V., Sheode, K., Meng, T.H., Plevri-
tis, S.K., and Nolan, G.P. (2012). CytoSPADE: high-
performance analysis and visualization of high-
dimensional cytometry data. Bioinformatics 28,
2400–2401.

Macosko, E.Z., Basu, A., Satija, R., Nemesh, J.,
Shekhar, K., Goldman, M., Tirosh, I., Bialas, A.R.,
Kamitaki, N., Martersteck, E.M., et al. (2015).
Highly parallel genome-wide expression profiling
of individual cells using nanoliter droplets. Cell
161, 1202–1214.

Satija, R., Farrell, J.A., Gennert, D., Schier, A.F.,
and Regev, A. (2015). Spatial reconstruction of sin-
gle-cell gene expression data. Nat. Biotechnol. 33,
495–502.

Setty, M., Tadmor, M.D., Reich-Zeliger, S.,
Angel, O., Salame, T.M., Kathail, P., Choi, K.,
Bendall, S., Friedman, N., and Pe’er, D. (2016).
Wishbone identifies bifurcating developmental
trajectories from single-cell data. Nat. Biotechnol.
34, 637–645.

Trapnell, C., Cacchiarelli, D., Grimsby, J., Po-
kharel, P., Li, S., Morse, M., Lennon, N.J., Livak,
K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dy-
namics and regulators of cell fate decisions are re-
vealed by pseudotemporal ordering of single cells.
Nat. Biotechnol. 32, 381–386.
Broad Views of Non-alcoholic Fatty Liver Disease
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Multi-omicsmulti-tissue data are used to interpret genome-wide association study results frommice to iden-
tify key driver genes of non-alcoholic fatty liver disease. Non-alcoholic fatty liver disease (NAFLD) is the accu-
mulation of fat (steatosis) in the liver due to causes other than excessive alcohol consumption. The disease
may progress to more severe forms of liver diseases, including non-alcoholic steatohepatitis, cirrhosis, and
hepatocellular carcinoma. In this issue of Cell Systems, Krishnan et al. (2018) reveal mechanisms underlying
NAFLD by generating multi-omics data using liver and adipose tissues obtained from the Hybrid Mouse
Diversity Panel, consisting of 113 mouse strains with various degrees of NAFLD. The study identified key
driver genes of NAFLD that can be used in the development of efficient treatment strategies and illustrates
the potential utility of systematic analysis of multi-layer biological networks.

In parallel with the increase in obesity,

the prevalence of NAFLD has increased

5-fold over the past two to three decades,

and NAFLD is now considered the

most common cause of chronic liver dis-

ease in Western countries (Loomba and

Sanyal, 2013). Despite the alarming prev-

alence of NAFLD, no single therapy has to

date been approved for treating it, and
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