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ABSTRACT 
Single-cell technologies have seen rapid advancements in recent years, along with new 

analytical challenges and opportunities. These high-throughput assays increasingly 

require special consideration in experimental design, sample multiplexing, batch effect 

removal, and data interpretation. Here, we describe a lentiviral barcode-based 

multiplexing approach, ‘CellTag Indexing’, where we transduce and label samples that 

can then be pooled together for downstream application and analysis. By introducing 

predefined genetic barcodes that are transcribed and readily detected, we can reliably 

read out sample identity via genomic or transcriptomic profiling, permitting the 

simultaneous assessment of cell grouping and transcriptional state. We validate and 

demonstrate the utility of CellTag Indexing by sequencing transcriptomes at single-cell 

resolution using a variety of cell types including mouse pre-B cells, primary mouse 

embryonic fibroblasts, human HEK293T cells, and mouse induced endoderm progenitors. 

Furthermore, we establish CellTag Indexing as a valuable tool for multiplexing direct 

lineage reprogramming perturbation experiments. We present CellTag Indexing as a 

broadly applicable genetic multiplexing tool that is complementary with existing single-

cell RNA-sequencing and multiplexing strategies. 
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INTRODUCTION 
Many advances have been made in developing single-cell technologies in recent years, 

providing unique opportunities to investigate biological entities and processes with 

unprecedented resolution. As single-cell platforms are increasingly adopted for a variety 

of assays, this has presented new challenges in experimental design and data analysis. 

Combining data obtained from different experimental batches into one integrated dataset 

is one such challenge that complicates data analysis with batch effects.  

 

In many typical single-cell RNA-sequencing (scRNA-seq) configurations, multiple 

biological samples are assayed separately then combined in a single dataset. For 

example, samples are loaded onto different “wells” of a scRNA-seq platform as separate 

runs, prepared as individual libraries, and later pooled together computationally. In this 

scenario, distinguishing true biological differences from potential batch effects arising 

from technical variation is an analytical and computational challenge that may produce 

systematic errors if not properly addressed. It was recently demonstrated that batch 

effects can drive aberrant clustering of the same biological sample processed by two 

different instruments1, demonstrating how single-cell data analysis can be complicated 

by measurement errors. A scRNA-seq experiment should ideally be approached with care 

to ensure technical variations are minimized experimentally, or properly corrected 

computationally.  

 

Several algorithms exist to enable computational correction of batch effects2–4. These 

methods aim to minimize technical artifacts in existing datasets by regressing out known 

factors of variation. However, these approaches are limited in that they require prior 

knowledge of the factors that need to be regressed out, which may not always be the 

case. Alternatively, samples may be pooled together and subsequently demultiplexed, 

based on their natural genetic variation5, given that the samples are genetically distinct. 

This is a powerful approach that allows for the multiplexing of ~20 samples, as long as 

their genotypes are known. However, if such information is not readily available or if the 

samples are closely biologically related, demultiplexing by genetic variation may not be 

optimal. 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/335547doi: bioRxiv preprint first posted online May. 31, 2018; 

http://dx.doi.org/10.1101/335547
http://creativecommons.org/licenses/by-nc-nd/4.0/


Recently, several “label-and-pool” approaches have been developed to mark a sample 

with a distinct identity prior to pooling and loading onto a single scRNA-seq run6–8. For 

example, cells can be tagged with barcoded antibodies7, or chemically labeled with DNA 

oligonucleotides8, such that cell identities can be read out in parallel with their 

transcriptomes. This type of approach minimizes technical variation experimentally and 

offers additional advantages of streamlined library preparation and reduced sequencing 

costs. Here, we introduce a methodology to multiplex biological samples via genetic 

labeling with lentiviral ‘CellTag Indexing’. In this approach, lentivirally-delivered barcodes 

are transcribed and detected via scRNA-seq, allowing the labelling and subsequent 

identification of different cell populations. This method facilitates the demultiplexing of 

sample identity from pooled single-cell transcriptomes. We validate CellTag Indexing via 

species mixing of genetically distinct populations, demonstrating the accurate 

demultiplexing of cell identity using this method. Furthermore, we establish CellTag 

Indexing as a valuable demultiplexing tool through its application to the analysis of direct 

lineage reprogramming, where we overexpress a candidate gene to investigate its effects 

on reprogramming fibroblasts to induced endoderm progenitors. We present CellTag 

Indexing as a broadly applicable tool, easily deployed in cell culture- and transplantation-

based assays, that will be compatible with many single-cell analysis modalities. 

 

RESULTS 
CellTag Indexing is a lentiviral barcode-based tool for genetically labeling 
biological samples 
Here, we present a lentiviral CellTag toolbox to label cells with transcribed DNA barcodes, 

acting as cell/sample identifiers that can be read out from single cell transcriptomes9. 

Briefly, the CellTag method utilizes lentiviruses encoding GFP and a SV40 

polyadenylation signal, where an 8-base pair (bp) index sequence is located within the 

GFP UTR (Fig. S1A). Using a defined barcode as an index, the CellTag virus is used to 

transduce and genetically label a sample. Once transduced, the viral GFP sequence 

produces polyadenylated and indexed transcripts that are efficiently captured as part of 

standard scRNA-seq library preparation pipelines, supporting the demultiplexing of 

original identity in downstream analysis. A set of predefined barcodes can be used for 
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indexing, and conversely, a complex library of multiple random barcodes can be used to 

label each cell with a unique combination of indexes for tracking clonal dynamics9.  

 

Species mixing of genetically distinct cells validates CellTag Indexing to label and 
subsequently demultiplex independent samples 
We previously demonstrated that predefined CellTags can be used to index fibroblasts 

that are spiked into a reprogramming cell population for benchmarking9. To demonstrate 

the efficacy of CellTag Indexing for the simultaneous labeling of multiple biological 

samples, we applied it to a species mixing experiment consisting of human HEK293T 

cells and mouse embryonic fibroblasts (MEFs), inspired by previous ‘barnyard’ mixing 

experiments to assess cell co-encapsulation rates in droplet-based scRNA-seq10.  

 

In this experimental validation, HEK293T and MEFs were transduced with CellTag 

Indexing viruses with two predefined barcodes, CellTag ‘A’ and CellTag ‘B’, respectively, 

for 24-48 hours. The transduced cells were cultured for an additional 72 hours, to permit 

CellTag expression, prior to collection and methanol fixation as previously described11, 

with a portion plated separately to visualize lentiviral transduction efficiency (determined 

to be ~90% for both HEK293T and MEFs; Fig. S1B). After rehydration, an equal-

proportion of CellTagged HEK293T and MEFs were pooled and loaded onto one single 

lane of the 10x Genomics Chromium Single Cell 3’ v2 system. The cell pool was ‘super-

loaded’ in order to promote multiplets formation, to permit the assessment of our 

approach in identification of mixed samples5. Following library preparation, a total of 

18,159 cells were sequenced, with an average of 10,263 reads per cell, and an inferred 

doublet rate of ~15%. Using the 10x Cell Ranger pipeline, single transcriptomes classify 

into 9,357 single human cells (hg19), 7,456 single mouse cells (mm10), and 1,346 

multiplets by alignment to a modified hg19-mm10 reference genome, where 

transcriptomes with total unique molecular identifiers (UMI, corresponding to transcripts) 

counts exceeding the 1st percentile of the distribution for both genomes classify as 

multiplets (Fig. 1B)12.  
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We used the output from the 10x pipeline as a benchmarking standard to validate our 

demultiplexing approach (Fig. 1A), where CellTag expression is used to infer sample 

identity. CellTag sequences were extracted from raw reads and collapsed using a 

sequence clustering approach13, generating a digital gene expression (DGE) matrix of 

UMI counts for each CellTag sequence. A filtering step was applied to the DGE matrix to 

remove additional noise arising from PCR and sequencing errors, followed by 

normalization and log transformation. Overall, CellTag expression is detected in 82.3% 

of all cells. We then demultiplexed the transcriptomes by using a simple hierarchical 

classification system, where a cell is classified as a multiplet if its expression is positive 

for both CellTags, as ‘non-determined’ if its expression is negative for both, and otherwise 

as either ‘human’ or ‘mouse’ when the appropriate CellTag is detected. Using a stringent 

threshold for detecting robust expression (Fig. S1C), we can classify the single-cell 

transcriptomes into 5,679 human cells, 5,080 mouse cells, 571 multiplets, and 6,829 non-

determined cells (Fig. 1C). 

 

Comparison of the 10x- and CellTag-based classification after removing non-determined 

cells shows excellent agreement (Figs. 1D-F), with a Cohen’s kappa of 0.8668 (95% CI 

[0.8582, 0.8754]).  Furthermore, cells designated as multiplets by both 10x and CellTag 

demonstrate a clear upward shift in the mean numbers of transcripts per cell (Figs. 

1G&H), suggesting that they likely represent true multiplets. 

 

CellTagging does not alter cell physiology 
To test the effects of lentiviral CellTag transduction on normal cell physiology, we cultured 

HAFTL pre-B cells as previously described14. We transduced one sample with CellTag 

lentivirus, while another sample was not transduced. To investigate the potential effects 

of CellTagging on gene expression, we sequenced single cells on 10x Genomics 

Chromium platform, from which we obtained 3,939 CellTagged transcriptomes and 2,064 

control transcriptomes after library preparation, sequencing, alignment, and filtering.  

 

We observe that CellTagged and control transcriptomes share similar quality metrics, with 

comparable numbers of genes detected, numbers of transcripts detected, and percent of 
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mitochondrial transcripts per cell (Fig. 2A). After filtering, dimension reduction, and 

clustering via Seurat15, we find that CellTagged transcriptomes and control 

transcriptomes are evenly interspersed together (Fig. 2B) with minimal independent 

clustering (Fig. 2C) and comparable cluster compositions (Fig. 2D), suggesting that they 

possess very similar expression profiles. Assessment of B cell-specific markers curated 

from the Mouse Cell Atlas dataset16 reveals that the two samples have indistinguishable 

levels of expression both on a single-cell level (Figs. S2A&B) and when averaged across 

the subpopulations (Fig. 2E). Genome-wide comparison of gene expression of the two 

samples shows a strong linear association with an R2 value of 0.9998 (Fig. 2F), confirming 

that CellTagging does not alter cell identity or physiology. 

 

CellTag Indexing enables multiplexing of perturbation experiments 
As our CellTag Indexing strategy utilizes genetic lentiviral labeling, it is particularly suited 

for multiplexing otherwise genetically identical samples subjected to different 

experimental treatments. We therefore applied CellTag Indexing to a perturbation 

experiment in an in house biological system of direct lineage reprogramming. Briefly, 

MEFs can be reprogrammed into induced endoderm progenitors (iEPs) by 

overexpressing transcription factors Foxa1 and Hnf4α17,18, a process marked by an early 

upregulation of Insulin-like growth factor-binding protein 3 (Igfbp3) in reprogrammed cells 

by our previous scRNA-seq analysis9. Igfbp3 has been implicated in stem cell function, 

migration, and homeostasis, particularly in the liver19 and the large intestine20. As iEPs 

have been previously shown to engraft both the liver17 and the colon (Fig. 3A)18,21, we 

sought to investigate the effect of its overexpression in the generation of iEPs. 

 

We designed a perturbation experiment where iEPs were generated, as previously 

described17,18, with or without Igfbp3 overexpression(Fig. 3A). Each sample was then 

allowed to reprogram and form iEP colonies (Fig. S3A), and then transduced with a 

predefined CellTag Index for 48 hours at week 4. iEPs were collected and methanol 

fixed11 on day 53. We have previously demonstrated that CellTags are not silenced over 

a 4-week period of reprogramming9. After rehydration, an equal-proportion pool was 

made and loaded onto the 10x Genomics Chromium platform, resulting in 6,080 single 
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transcriptomes with an average of 28,091 reads per cell. Using a stringent classification 

threshold (Fig. S3B), we classify all transcriptomes into 502 control cells, 1,221 Igfbp3 

cells, 17 multiplets, and 4,940 non-determined cells using our established demultiplexing 

pipeline. Overall, we detect CellTag expression in 35% of all cells. The purpose of this 

relatively sparse labeling here also serves to demonstrate that cluster identity can be 

inferred (Fig. S3C), following low-level transduction and analysis. For the remainder of 

this study, we excluded multiplets and non-determined cells in the following analysis. 

 

We performed filtering by library size, number of genes expressed, and percentage of 

mitochondrial genes (Figs. S3D), followed by normalization and scaling as previously 

described15. After dimension reduction and clustering, analysis reveals four clusters (Fig. 

3C). Interestingly, Igfbp3 cells predominantly cluster into three clusters (0, 2, and 3), while 

control cells consist of the majority of the remaining cluster, cluster 1 (Fig. 3B-D). 

Inspection of several known markers of iEP reprogramming shows that most cells have 

upregulated Apoa1, previously shown to mark reprogrammed iEPs9, with very few 

fibroblasts remaining (Fig. 3E). Differential gene expression and gene list enrichment 

analysis22,23 reveals that while control cells express markers associated with both small 

and large intestines, liver, and stomach, Igfbp3 cells separate into clusters that contain 

predominantly liver, bone marrow, and fibroblast signatures, respectively (Fig. 3E&F). 

The observed liver bias of Igfbp3 overexpression cells raises the possibility that its 

expression may drive reprogramming iEPs to adopt a more restricted lineage for their 

endoderm potential, as opposed to their control counterparts which become poised for 

differentiation toward several endodermal cell types. Findings such as these will assist in 

the design of more precise engineering of cell identity. Together, these results 

demonstrate the utility of CellTag Indexing for the accurate assessment of complex cell 

perturbation experiments. 

 

DISCUSSION 
Here, we introduce a broadly applicable and novel approach, CellTag Indexing, to 

multiplex biological samples for scRNA-seq, where each sample is genetically labeled 

with a predefined lentiviral GFP barcode to mark its biological identity. We demonstrate 
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that CellTagging does not interfere with cell identity, and validate the utility of CellTag 

Indexing via species mixing, showing that CellTag Indexing can be used to multiplex 

biological samples for scRNA-seq. We further demonstrate that CellTag Indexing can be 

used to multiplex biologically similar samples subjected to different experimental 

treatments, supporting experimental designs with minimal batch effects. 

 

Our CellTag Indexing method provides the advantages of minimized technical variation 

by experimental design, broad compatibility with various single cell technologies, 

streamlined workflow and library preparation, reduced sequencing cost, and 

straightforward demultiplexing strategy. Furthermore, CellTag Indexing is designed for 

broad applications; its use of lentivirus as a labeling method represents a commonly used 

and very accessible biological tool with minimal setup costs and reagent requirements. 

CellTag Indexing conveniently utilizes GFP as a barcode carrier, which can act as a visual 

readout for estimating labeling efficiency. The GFP CellTag Index transcripts are 

abundantly expressed, and can be specifically amplified during library preparation to 

further increase detection efficiency. 

 

Although we only demonstrate the multiplexing of two samples in our study here, it is 

possible to use CellTag Indexing for the simultaneous labeling of more than two samples, 

especially with the ‘super-loading’ strategy that was recently reported5. CellTag Indexing 

is also potentially compatible with single nucleus sequencing, as its transcripts are highly 

expressed and readily captured. Furthermore, cells labeled with CellTag Indexing can be 

cultured and subjected to additional assays prior to sequencing, for example in a 

completive transplant assay. We present CellTag Indexing here as a broadly-applicable 

tool complementary to existing methods for multiplexing and demultiplexing, providing a 

diverse panel of experimental and analytical strategies. As single-cell biology advances 

with increasing resolution and scale, future development in technologies will help guide 

studies to reveal deeper biological insights. 
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METHODS 
Mice 
Mouse embryonic fibroblasts were derived from the C57BL/6J strain (The Jackson 

Laboratory 000664). All animal procedures were based on animal care guidelines 

approved by the Institutional Animal Care and Use Committee. 

 

Cell culture 
HEK293T and mouse embryonic fibroblasts were cultured in Dulbecco’s Modified Eagle 

Medium (Gibco) supplemented with 10% Fetal Bovine Serum (Gibco), 1% 

penicillin/streptomycin (Gibco), and 55 μM 2-mercaptoethanol (Gibco). HAFTL pre-B cells 

were cultured in RPMI1640 without phenol red (Lonza) supplemented with 10% 

charcoal/dextran-treated FBS (Hyclone) and 55 μM 2-mercaptoethanol (Gibco)14. 

 
Immunostaining and quantification 
Transduced HEK293T and MEFs were cultured on a 4-chamber culture slide (Falcon) for 

24 hr prior to fixation in 4% paraformaldehyde and staining in 300 nM DAPI in PBS. The 

slide was then mounted in ProLong Gold Antifade Mountant (Invitrogen). Images were 

acquired on a Nikon eclipse Ts2 inverted microscope. 

For automatic quantification, images of CellTagged HEK 293T and MEF were processed 

with a custom python script to count GFP positive/negative cells. The proportion of GFP 

positive cells was calculated from DAPI and GFP images. First, DAPI images were 

transformed into binary images by thresholding fluorescent signal. The threshold values 

were determined by the Otsu method. The binary nucleus image was processed by 

watershed segmentation to separate individual cell areas completely. Inappropriately 

sized objects were filtered to remove noise and doublet cells. The intensity of the GFP 

signal per individual cell area was then quantified to distinguish between GFP positive 

cells and negative cells. These processes were run with Python 3.6.1 and its libraries: 

scikit-image 0.13.0, numpy 1.12.1, matplotlib 2.0.2, seaborn 0.8.1, jupyter 1.0.0. 

 
 
 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/335547doi: bioRxiv preprint first posted online May. 31, 2018; 

http://dx.doi.org/10.1101/335547
http://creativecommons.org/licenses/by-nc-nd/4.0/


Generation of iEPs 
Mouse embryonic fibroblasts were converted to iHeps/iEPs as previously described17,18. 

Briefly, fibroblasts were prepared from E13.5 embryos, cultured on gelatin, and serially 

transduced with Hnf4α-t2a-Foxa1 retrovirus over the course of 5 days, followed by culture 

on collagen in hepato-medium, which is DMEM:F-12 (Gibco) supplemented with 10% 

FBS, 1% penicillin/streptomycin, 55 μM 2-mercaptoethanol, 10 mM nicotinamide (Sigma-

Aldrich), 100 nM dexamethasone (Sigma-Aldrich), 1 ug/mL insulin (Sigma-Aldrich),  and 

20 ng/ml epidermal growth factor (Sigma-Aldrich). For the perturbation experiment, 

reprogramming 3-factor iEPs were serially transduced with Igfbp3 retrovirus on day 8 and 

day 10. 
 

Lenti- and retrovirus production 
Lentiviruses were produced by transfecting HEK293T cells with lentiviral pSMAL vector 

and packing plasmids pCMV-dR8.2 dvpr (Addgene plasmid 8455) and pCMV-VSV-G 

(Addgene plasmid 8454) using X-tremeGENE 9 (Sigma-Aldrich). Viruses were collected 

48 and 72 hr after transfection. Retroviruses were similarly produced, with retroviral 

pGCDNsam vector and packaging plasmid pCL-Eco (Imgenex). 

 

CellTag Indexing 
CellTag lentiviral constructs were generated by introducing an 8bp variable region into 

the 3’ UTR of GFP in the pSmal plasmid24 using a gBlock gene fragment (Integrated DNA 

Technologies) and megaprimer insertion. Individual clones were picked and Sanger 

sequenced to generate predefined barcodes.  

 

scRNA-seq procedure  
10x Genomics Chromium Single Cell 3’ Library & Gel Bead Kit v2, Chromium Single Cell 

3’ Chip kit v2, and Chromium i7 Multiplex kit were used according to the manufacturer’s 

protocols. cDNA libraries were quantified on the Agilent 2200 TapeStation and sequenced 

on Illumina HiSeq 2500.  
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CellTag demultiplexing 
Reads containing the CellTag sequence were extract from the processed, filtered, and 

unmapped reads BAM files produced in intermediate steps of the 10x pipeline. Reads 

that contained the CellTag "motif" were identified: “CCGGTNNNNNNNNGAATTC”. 

Following extraction of reads from the BAM file, a custom gawk script was utilized to parse 

the output, capturing the Read ID, Sequence, Cell Barcode, UMI, CellTag Sequence, and 

Aligned Genes of each read. CellTags and surrounding motifs aligning to genes were 

filtered out. This parsed output was then used to construct a Cell Barcode x CellTag UMI 

matrix. CellTags were grouped by Cell Barcodes and then the number of unique UMIs for 

each Cell Barcode, CellTag pair was counted. The matrix was then filtered to remove any 

cell barcodes not found in the filtered Cell Ranger file. Finally, the CellTags were filtered 

to remove any that were represented by £1 UMI. The construction and filtering of the 

CellTag UMI matrix accomplished using a custom R script. CellTag sequences were 

collapsed using Starcode with the sphere clustering algorithm13, after which the DGE was 

correspondingly collapsed in R. Then, a filtering of predefined CellTag sequences was 

applied to the DGE, followed by normalization and log transformation. Each cell barcode 

was then assigned a classification by a simple hierarchical algorithm, where a cell is 

classified as a multiplet if its expression is positive for both CellTags, as ‘non-determined’ 

if its expression is negative for both, and otherwise as either ‘human’ or ‘mouse’ when 

either CellTag is detected, using a threshold of 1 for detecting robust expression. 

 

scRNA-seq analysis 
The R package Seurat15 was used for data processing and visualization. For the iEP 

dataset, we removed cells with a low number of genes detected (<200), cells with a high 

number of UMI detected (>100000), and cells with a high proportion of UMI counts 

attributed to mitochondrial genes (>0.2), resulting in a filtered matrix of 1,652 cells and 

16,153 genes. The filtered expression matrix was then subjected to log normalization with 

the default scale factor of 10,000, variable gene detection resulting in 940 variable genes 

(average expression between 0.2 and 3, dispersion greater than 0.5), and scaling to 

remove unwanted sources of variation driven by number of detected UMIs and 

mitochondrial gene expression. Linear dimension reduction was performed, followed by 
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clustering using the first 15 principal components as the input and a resolution of 0.6. 

Non-linear dimension reduction and visualization by tSNE, and differential gene 

expression analysis were performed using the default parameters. Individual lists of gene 

markers for each cluster was then uploaded into the interactive Enrichr gene list 

enrichment analysis tool to assess enrichment of upregulated genes in mouse tissues 

from BioGPS, using the Mouse Gene Atlas gene list under the Cell Types category. The 

results were visualized using the bar graph option, sorted by combined score of p-value 

and z-score. 
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Figure 1. Species mixing experiment validates CellTag Indexing to 
label and subsequently demultiplex independent samples. (A) 
Overview of the CellTag demultiplexing pipeline. (B) Classification of the 
species mixed transcriptomes by 10x Cell Ranger into 9,357 single 
human cells (hg19), 7,456 single mouse cells (mm10), and 1,346 
multiplets. (C) Classification of the species mixed transcriptomes by 
CellTag Index demultiplexing into 5,679 human cells, 5,080 mouse 
cells, 571 multiplets, and 6,829 non-determined cells. (D) Comparison 
of 10x and CellTag classifications after removing non-determined cells. 
(G) Distribution of total number of transcript detected in each single 
transcriptome, grouped by 10x classification. (H) Distribution of total 
number of transcript detected in each single transcriptome, grouped by 
CellTag classification.
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Figure 2. CellTagging does not alter cell physiology. (A) Distribution 
of total number of transcripts detected, total number of genes detected, 
and percent of detected transcripts attributed to mitochondrial genes in 
each single transcriptome, grouped by sample identity. (B) tSNE
visualization of single transcriptomes, colored by sample identity. (C) 
tSNE visualization of single transcriptomes, colored by cluster identity. 
(D) Cluster composition of each sample, colored by cluster identity. (E) 
Log average gene expression for B cell markers, grouped by sample 
identity. (F) Log average gene expression for all detected genes in 
control cells and CellTagged cells, fitted with linear regression with a R2 

value of 0.9998.
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Figure 3. CellTag Indexing enables multiplexing of direct lineage 
reprogramming perturbation experiments. (A) Schematic of iEP 

generation and its potential to engraft both the liver and the large 

intestine; perturbation experiment setup is such that two-factor iEPs 

were generated by overexpressing Foxa1 and Hnf4α, and three-factor 

iEPs were generated by overexpression Foxa1, Hnf4α, and Igfbp3. (B) 

tSNE visualization of single transcriptomes showing two samples with 

minimal overlap, colored by sample identity. (C) tSNE visualization of 

single transcriptomes separated into four clusters, colored by cluster 

identity. (D) Cluster composition of each sample, with control cells 

largely located to cluster 1, and Igfbp3 cells consisting of clusters 0, 2, 

and 3. (E) Expression patterns of iEP marker Apoa1, fibroblast marker 

Col1a2, liver marker Mgst1, and intestinal marker Lgals4. (F) 

Enrichment of BioGPS mouse tissue upregulated gene lists by each 

cluster.
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Figure S1. Species mixing experiment validates CellTag Indexing 
to label and subsequently demultiplex independent samples. (A) 
Schematic of CellTag design and sample multiplexing strategy. (B) 
Fluorescent microscopy images of CellTagged HEK293T (left panel) 
and MEFs (right panel) with automated quantification, where red boxes 
designate automatically-detected GFP-positive cells, and white boxes 
designate automatically-detected GFP-negative cells. (C) Log CellTag 
transcript count before and after filtering.
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Figure S2. CellTagging does not alter cell physiology. (A) Gene 
expression heatmaps of B cell markers Cd19 and Cd79a in CellTagged
and control single cells. (B) Single-cell gene expression distribution of 
eighteen B cell markers in CellTagged and control single cells.
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Figure S3. CellTag Indexing enables multiplexing of direct lineage 
reprogramming perturbation experiments. (A) Transmitted light 
microscopy images of day 21 two-factor and three-factor iEPs. Scale 
bar, 50 μm. (B) Log CellTag transcript count before and after filtering. 
(C) tSNE visualization of the perturbation experiment when including 
non-determined (nd) cells, colored by cluster identity (left panel) and 
sample identity (right panel). (D) Distribution of total number of 
transcript detected, total number of gene detected, and percent of 
detected transcripts attributed to mitochondrial genes in each single 
transcriptome.
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